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Abstract The problem of deorbiting large space debris (SLD) by means of a tethered space tug is considered.
A mathematical model that describes the plane motion of the system is developed. The model takes into account
the effects of the atmosphere and the rotary motion of the SLD around the SLD center of mass. The effects of
the moment of tension force, gravitational moment, and pitch moment on the SLD behavior are studied. The
evolution of the phase space of an angle of attack during the SLD descent is considered. Singular points are
found for special cases of motion. It is shown that the effect of the atmosphere on the SLD dynamics can be
neglected above an altitude of 300 km. The situation that a tether becomes slack is observed. In this case, the
SLD can oscillate with increasing amplitude and even pass into rotation. This is a dangerous situation that can
lead to tether rupture. A method of thrust control that provides tension in the tether during the SLD deorbiting
is presented. A slack tether is also observed at atmospheric entry. This phenomenon is caused by the difference
in drag forces that act on the SLD and on the space tug. The obtained results can be used in the preparation of
missions of space debris deorbiting.

Abbreviations
SLD Large space debris
STS Space tether system

1 Introduction

The problem of space debris has been extensively discussed in the scientific community in recent decades.
The quantity of technogenic objects has been increasing steadily in near-Earth space, which has complicated
putting new satellites into orbit and ensuring their safety. The issue is particularly acute in low orbits below
an altitude of 2,000 km, and also for a geostationary orbit [1].
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Deorbiting of all new satellites after their missions are complete and of upper stages of new rockets is one
measure that can be taken to stabilize the situation in the future. These operations should become an integral
part of all new space programs. European experts estimate that such a measure can stop the growth of space
debris [2,3]. However, the removal of new debris alone does not solve the problem since massive objects from
previous missions that remain in orbit continue to be a danger. The modern evolutionary model of the motion
of space debris shows that the debris population will grow as a result of collision and subsequent destruction
of these objects even if no more rockets are launched [4].

Several projects of large space debris (SLD) removal are discussed in the literature. There are projects that
use a high-power pulsed laser system for braking space objects and placing them on a descent trajectory [5,6].
Part of the work suggests using an active spacecraft (i.e., tug) that tows debris to a lower altitude. In this case,
for its own safety, the tug is connected to the removed object without docking by an elastic tether or a special
network [7,8]. There are projects in which debris is removed at the expense of the interaction of a conductive
tether with the magnetic field of the Earth [9,10]. Many papers have investigated the dynamics of space tether
systems (STSs) [11,12]. The control and stabilization of such a system upon tether deployment are important
tasks for the considered problem of removing debris by towing [11,13].

A piece of space debris is considered as a point mass (material point) in existing papers [7–10]. This
assumption is appropriate for the initial stages of study. Uncontrolled oscillations of the SLD can cause the
tether to spin-up and rupture, and it is thus necessary to take into account the motion of the SLD around the SLD
center of mass. Mathematical models of a space tether system that take into account the motion of one of the
tip bodies around its center of mass have been presented [14,15]; however, these models consider the influence
of the gravitational force only. The neglect of the atmosphere influence is a weak point of these studies.

The present study considers an STS that consists of an active spacecraft with a propulsion system called a
space tug, a massless elastic tether, and a piece of SLD. The SLD is a rigid body. The tether provides the capture
of the SLD and the transfer of a thrust force from the space tug to the SLD. The aim of this paper is to develop a
mathematical model that describes the motion of the mechanical system taking into account the influence of the
atmosphere and the gravitational moment and then to use the model in studying the SLD motion during towing.

The paper is divided into eight sections. Section 2 develops the mathematical model of the STS taking
into account the influence of the atmosphere and the plane motion of the SLD around its center of mass.
Section 3 describes a method of approximately calculating the aerodynamic characteristics, which are used in
the mathematical model. Section 4 analyzes the effects of the aerodynamic and gravitational moments and the
moment of the tension force, which act on the SLD during the descent. Section 5 investigates the phase portraits
of the unperturbed motion of the SLD around its center of mass under the influence of various disturbing factors.
Section 6 studies the motion of the system in the case that the tether can become slack and, as a result, the space
tug and SLD start to move independently. In such cases, there can be an uncontrolled swing of the SLD and
transition into rotation. A technique of thrust control, which provides tether tension throughout the descent, is
offered in Sect. 7. Section 8 presents the numerical simulation of the SLD motion using the control.

2 Mathematical model

Let us study the plane motion of the STS. The SLD is considered as an axisymmetric rigid body with a center
of mass at point C2, and the space tug is considered as material point C1 (Fig. 1). Tether fixing point P is on the
axis of symmetry of the SLD. The STS moves in a central gravitational field. The space tug is equipped with a
propulsion system that can provide constant thrust. We take into account the influence of the atmosphere on the
space tug and the SLD. We use NRLMSISE-00 as a model of the atmosphere [16]. Earth’s rotation is neglected.

The origin of the inertial coordinate system O XY coincides with the center of the Earth. Positions of the
space tug and the SLD are determined by the distance to the center of the Earth ri , the angle of the true anomaly
ϑi , the flight-path angle γi , and the angle of attack α, where i = 1 corresponds to the space tug and i = 2 to
the SLD (Fig. 1).

The equations of motion of the centers of mass C1 and C2 are [17]

mi V̇i = −μmi sin γi

r2
i

− CDi Ai qi − Fi cos γi

−(2i − 3)
T

l
(r2 sin γ2 − r1 sin (γ2 + ϑ2 − ϑ1)) ,
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Fig. 1 Space tether system

mi γ̇i = −μmi cos γi

r2
i Vi

+ CLi Ai qi

Vi
+ mi Vi cos γi

ri
+ Fi

Vi
sin γi (1)

−(2i − 3)
Ti

lVi
(r2 cos γ2 − r1 cos (γ2 + ϑ2 − ϑ1)) ,

ϑ̇i = − Vi cos γi

ri
,

ṙi = Vi sin γi ,

where Vi is the velocity of the i th point, μ is the gravitational parameter, CLi = CLi(α) is a dimensionless
coefficient of the lift force, CDi = CDi(α) is a dimensionless coefficient of the drag force, qi = ρ(ri )V 2

i /2
is the dynamic pressure, ρ(r) is the atmosphere density at a distance r from the center of the Earth, Ai is the
area of the middle section of the i th body (i = 1, 2), F1 = F is the thrust, and F2 = 0. T = c (l − l0) is the
tension force, with c being the stiffness of the tether given by

c =
{

E S/ l0, if l ≥ l0,
0, if l < l0,

(2)

where E is the modulus of elasticity of the tether, S is the area of the tether cross section, and l0 is the length
of the unstrained tether. l is the length of the tether (Fig. 1) given by

l =[
(r2 cos ϑ2 − a sin(ϑ2+γ2+α) − r1 cos ϑ1)

2 + (r2 sin ϑ2 − a cos (ϑ2+γ2+α) − r1 sin ϑ1)
2]1/2

, (3)

where a = PC2 is the distance from the center of mass of the SLD to the fixing point of the tether (Fig. 1).
Note that the distance a is a few orders of magnitude less than r2, and we can therefore write

l−1 ≈ 1

s
+ r2a sin(2ϑ2 + γ2 + α) − r1a sin(ϑ2 + ϑ1 + γ2 + α)

s3 , (4)

where s =
√

r2
2 − 2r1r2 cos(ϑ1 − ϑ2) + r2

1 . Equation (4) simplifies the equation of the system (1).
To obtain the equation of rotational motion of the SLD about its center of mass, we use the evolution

equation for the angular momentum:

dK2

dt
= Mα + MT + MG, (5)

Mα = Cm A2L2q2, (6)

MT = −ac (l − l0)
(r1

l
cos(ϑ2 − ϑ1 + γ2 + α) − r2

l
cos(γ2 + α)

)
, (7)

MG = − 3μ

2r3
2

(Jx − Jy) sin (2γ2 + 2α) , (8)
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Fig. 2 Dependence of the aerodynamic coefficients on the angle of attack

where K2 = Jz(ϑ̇2 + γ̇2 + α̇) is the angular momentum of the SLD, t is time, Jz is the moment of inertia
of the SLD, Mα is the pitching moment, Cm = Cm(α) is the coefficient of the pitching moment, L2 is the
characteristic size of the SLD, MT is the moment of the tension force, and MG is the gravitational moment [18].

From Eqs. (5)–(8), we have the equation of rotational motion of the SLD about its center of mass:

Jz(ϑ̈1 + α̈ + γ̈2) = Cm A2L2q2 − 3μ

2r3
2

(Jx − Jy) sin(2γ2 + 2α)

−ac

(
1 − l0

l

)
(r1 cos(ϑ2 − ϑ1 + γ2 + α) − r2 cos(γ2 + α)) . (9)

3 Calculation of aerodynamic coefficients

To integrate Eqs. (1) and (9), it is necessary to know the values of the dimensionless aerodynamic coefficients
CDi(α), CLi(α), and Cm(α). Determination of the aerodynamic coefficients is a difficult task, and simplified
calculation methods are thus used in practice. One widely applied technique is the shock theory of Newton,
which provides simple results for the rarefied environment [19]. As a rule, the aerodynamics of a body are
given by coefficients of the tangential and normal aerodynamic forces Cx and Cy , which are associated with
CD and CL by the relations

CD = Cx cos α + Cy sin α,

CL = −Cx sin α + Cy cos α.
(10)

In practice, it is convenient to expand these coefficients as Fourier series and to use only the first few terms in
the expansions:

Cx =
N∑

j=1

cx j cos( jα), Cy =
N∑

j=1

cyj sin( jα), Cm =
N∑

j=1

mzi sin( jα). (11)

As an example, let us consider the second stage of the space launch vehicle Cosmos 3M. This vehicle has
delivered more than 300 satellites into orbit. As a result, at altitudes of 200–1,700 km, there is currently a large
number of second stages of the Cosmos 3M [20]. When calculating the aerodynamics, we approximate the
second stage of the Cosmos 3M as a cylinder with a flat bottom. The length of the cylinder is Lc = 6.5 m,
and the diameter is Dc = 2.4 m. The mass of the stage is m2 = 1,500 kg. The moments of inertia are
Jx = 1,285 kg m2, Jy = 6,829 kg m2, and Jz = 6,812kg m2. The distance from the center of mass to the point
of the tether attachment is a = 4 m [20]. Figure 2 presents graphs of the aerodynamic coefficients, which were
obtained using Newton’s method for the Cosmos 3M. Table 1 contains the coefficients of the Fourier series
(11). The first three terms of the expansion (11) give good results for the considered body. In this case, the
standard deviations are of the order of 10−3.
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Table 1 Coefficients in the expansions of aerodynamic coefficients

j (index of coefficient) cx j cy j mzj

1 1.5723 3.6131 −1.0569
2 −0.0012 0.0007 −0.0006
3 0.3145 −0.7226 0.2114
4 0 0 0
5 −0.0449 −0.1032 0.0302

4 Effect of moments on the descent trajectory

Accounting for the effects of the atmosphere severely complicates the equations of motion (1) and (9). At the
same time, the density of the atmosphere at an altitude of 80 km is relatively low. This low density largely
determines the long existence of space debris in orbit. The question of the appropriateness of the accounting of
the effects of the atmosphere at high altitudes arises. The effects of various forces on the motion of the center
of mass of a body in orbit have been assessed in the literature [21]. The motion of the SLD around the mass
center is important for the considered problem. To estimate the magnitudes of the moments that define this
motion, we carry out numerical simulation of the descent from a circular orbit at a height of 1,000 km to an
altitude of 100 km. In the estimation, we consider the maximum possible amplitudes of the moments (6)–(8):

Mα max = max(|Cm|)A2L2q2, MT max = ac max
T

(l − l0) , MG max = 3μ

2r3
2

|Jx − Jy |,

where max
T

is the maximum value over the period of oscillation of the tether length l(t). We assume that the tug

mass is m1 = 500 kg and that the tether has parameters E = 1 GPa, l0 = 1,000 m, and diameter d = 2 mm.
The SLD and tug initially move in circular orbits (Fig. 1). The SLD is oriented along C1C2 (Fig. 1):

ri0 = 7,371 km, Vi0 = √
μ/r0, γi0 = 0, ϑ10 = π/2. (12)

The angle ϑ2 can be found from the geometry:

ϑ20 = − arcsin

(
(l + a)2 − 2r2

10

r2
10

)
.

Initially, the length of the tether l is chosen so the modulus of projection of thrust F on the line C1 P equals
the tension force T :

F cos β = T = c(l − l0),

where cos β = r20 cos ϑ20(l +a)−1. Substituting here the expression for ϑ20, we obtain the nonlinear equation
for l, which can be solved numerically. We can then calculate values of ϑ20 and α0 = π/2 − ϑ20 − β. We
conduct a series of numerical calculations for different values of F ∈ [0.1, 100]N. The dependence of the time
required for the SLD to descend to an altitude of 100 km on the thrust is shown in Fig. 3.

In the case that the force F lies on the designated border (0.1N ≤ F ≤ 100N), at an altitude of 1,000 km,
the inequality Mα max < MG max < MT max holds. As the SDL altitude decreases, MG max and Mα max increase.
Figure 4 illustrates the relationship between the moments at different values of the force F . A gray area cor-
responds to the case that the tether is slack during the deorbiting. A white area corresponds to the case that the
tether remains strained all the time.

During the initial stage of motion, the greatest impact on the SLD rotational motion is the moment of
tension force MT. The thrust F strongly affects this value. At an altitude of 1,000 km, MT max is two orders
of magnitude greater than MG max for F = 0.1N . At higher values of F , this difference increases. The line
MT max = 1,000Mα max divides Fig. 4 into two regions. The region above this line corresponds to the case
when the moment of tension force is more than three orders of magnitude greater than the gravitational and
pitching moments. Similarly, the region below the line MG max = 0.001 Mα max (Fig. 4) corresponds to the
case when the pitching moment is more than three orders of magnitude greater than the gravitational moment.

Thus, when motion occurs at heights greater than 300 km and the tether remains stretched all the time, the
terms associated with aerodynamic and gravitational moments can be neglected in Eq. (9). If the tether is slack,
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Fig. 3 Dependence of the time of descent on the thrust force

Fig. 4 Relationship between the moments at different values of F

at high altitudes, we can take into account only the gravitational moment (Fig. 4). At altitudes of 750–120 km,
the gravitational and pitching moments should be taken into account. At altitudes lower than 120 km, we can
take into account only the pitching moment.

5 Analysis of the SLD motion around the SLD center of mass

Motion around the mass center of a piece of debris that has large dimensions and a great mass strongly affects
the motion of the system as a whole. Large amplitude oscillations or rotation of the SLD can lead to tangling
and breakage of the tether. It is important to avoid such situations. To understand what types of motions the
SLD can perform, we fix the parameters Vi , γi , ϑi and ri and consider Eq. (9). The previous section showed
that, at a certain altitude range, the motion of the SLD around its center of mass is determined by only the
moment of the tension force, only the gravitational moment or only the pitching moment. We consider in detail
these special cases and construct phase portraits and find singular points. This information will be used to
illustrate the nature of spin-up of the SLD when the tether becomes slack.

5.1 General case

Let us choose a point on the descent trajectory, fix parameters Vi , γi , ϑi and ri , and substitute Eq. (4) into
Eq. (9):

α̈ + f (α) = 0. (13)
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Fig. 5 Phase portrait of Eq. (15)

Equation (13) can be written as

α̈ +
3∑

j=0

(kcj cos jα + ks j sin jα) = 0, (14)

where kcj and ks j are functions of the fixed parameters. Note that Eq. (14) has an energy integral

E = α̇2

2
+ W (α) = h = const.,

where

W (α) =
∫ 3∑

j=0

(kcj cos jα + ks j sin jα)dα = kc0α +
3∑

j=1

(
kcj

j
sin jα − ks j

j
cos jα

)
.

We consider particular cases that correspond to various points on the trajectory of the STS.

5.2 Motion under the action of the moment of the tether tension

If the motion occurs at high altitude, the moment of the tether tension determines the motion of the SLD.
Numerical calculations showed that, at altitudes above 300 km, this moment surpasses the moments Mα and
MG by several orders of magnitude. In this case, some small terms in Eq. (13) can be neglected:

α̈ = −ac (l − l0 )

l Jz
(r1 cos(γ2 + α + ϑ2 − ϑ1) − r2 cos(γ2 + α)) . (15)

To find singular points, we make the right hand side of Eq. (15) equal to zero:

α∗k = − arctan

(
r1 cos(ϑ1 − ϑ2) − r2

r1 sin(ϑ1 − ϑ2)

)
− γ2 + πk, k ∈ Z. (16)

Figure 5 shows an example of the phase portrait of the system in the case that the moment of the tether tension
decisively determines the motion of the SLD.

On the phase portrait, two types of singular points are observed: saddles (when k is odd) and centers (when
k is even). Heteroclinic trajectories connect saddle points [22]. There are areas of oscillation and rotation in
the phase portrait. Oscillations can occur with large amplitude αmax ∈ [0, π].
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Fig. 6 Phase portrait of Eq. (18)

5.3 Motion under the action of the gravitational moment

When there is no tension force (i.e., l < l0), according to Eq. (2), Eq. (13) takes the form

α̈ = q2 A2L2

Jz

3∑
j=1

(mzj sin jα) − 3μ

2r3
2

· Jx − Jy

Jz
sin(2γ2 + 2α). (17)

The right hand side of the Eq. (17) contains two terms corresponding to the pitching and gravitational moments.
Let us consider partial cases when one of these terms can be neglected.

At high altitudes, the density of the atmosphere is low and the gravitational moment decisively affects the
motion of the SLD:

α̈ = − 3μ

2r3
2

· Jx − Jy

Jz
sin(2γ2 + 2α). (18)

In this case, the singular points α∗k are observed on a phase portrait (Fig. 6):

α∗k = −γ2 + πk

2
, k ∈ Z.

Even values of k correspond to centers, and odd values to saddle points. Saddle points are connected by het-
eroclinic trajectories [22]. As in the previous case, there are areas of oscillations and rotation in the phase

portrait, but in this case, the amplitude of the oscillations is less: αmax ∈
[

πk
2 ,

π(k+1)
2

]
, k ∈ Z.

5.4 Motion under the action of the pitching moment

When the influence of the gravitational moment is weak in comparison with the pitching moment, the motion
of the SLD is approximately described by

α̈ = q2 A2L2

Jz

3∑
j=1

(mzj sin jα). (19)

This equation has singular points

α∗ck = πk,

α∗sk = (−1)(k) arccos

⎛
⎝ (−1)(k+1)mz2 +

√
m2

z2 − 4mz3mz1 + 4m2
z3

4mz3

⎞
⎠ + πk, k ∈ Z,

where mzj are given in Table 1. If the expression under the operation of the arccos function is less than 1,
then there are two types of singular points: α∗ck are centers and α∗sk are saddle points. In this case, there are
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Fig. 7 Phase portrait of Eq. (19)

Fig. 8 Phase portrait of Eq. (19)

several oscillation areas of various sizes in the phase portrait (Fig. 7). If the expression under the operation of
the arccos function is greater than 1, then there are singular points α∗k = πk. Even values of k correspond to
centers, and odd values to saddle points. Saddle points are connected by heteroclinic trajectories. The phase
portrait is shown in Fig. 8. This case corresponds to the considered example of Cosmos 3M.

In all cases, there are areas in the phase portraits corresponding to oscillations and rotations. At the same
time, the thicknesses of the areas covered by the separatrices differ by several orders of magnitude in the cases
considered in Sects. 5.1, 5.2, and 5.3. In the next section, it will be shown that this is a prerequisite for the
spin-up of the SLD.

6 Nature of the spin-up of the SLD

A series of numerical calculations showed that the considered STS is able to induce the descent of the SLD from
an orbit. However, if the tether is initially slack, the distance between points P and C1 periodically becomes less
than l0 during the descent. In this case, the tension force periodically disappears, and as a result, the SLD and tug
start to move independently, the oscillations of the SLD cease to be regular, and the SLD may begin to rotate.

Figure 9 shows the change in the angle of attack with time obtained by numerical integration of the system
of Eqs. (1) and (9) with initial conditions (12). Gray zones correspond to the free motion of STS elements,
and white zones to the motion with the stretched tether. One can see that the SLD is first swinging and then
transitions into rotation.

Let us consider the motion of the SLD in the case that the tension of the tether can disappear. If the tether is
stretched, the moment of tension aspires to orient the SLD along a line that connects the centers of mass of the
tug and SLD. Since there are no dissipative forces, the axis of the SLD continuously oscillates around this line.
If at some time the tension force disappears, the SLD continues to rotate in the same direction owing to inertia.
Comparing the phase portraits shown in Figs. 5 and 6, it is seen that the area of oscillations in the case of the
stretched tether is much wider than that in the case of no tension force. In other words, upon the disappearance
of tension force, the SLD remains in the area of oscillations if its angular velocity is very small. Otherwise,
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Fig. 9 Change in the angle of attack with time

Fig. 10 Transition phase trajectories through the separatrix at the weakening of the tether (point A1) and at re-tension (points A2
and A3); areas of oscillations bounded by separatrices are shown in gray

the SLD passes into rotation (point A1 in Fig. 10). After a while, the tether stretches again. The representation
point can either reenter the area of oscillations (point A2 in Fig. 10) or stay in the field of rotation (point A3 in
Fig. 10). Thus, the presence of areas of free motion means that the phase trajectories can uncontrollably pass
from one area bounded by the separatrix of phase space to another.

7 Thrust control for the tether tension

The situation that the tether is stretched at the moment of the engine switching on was considered in Sect. 4.
In this case, oscillations of the SLD are regular. If the tether is initially slack, then no matter how great the
thrust is, the tether will slacken again after a while. This situation was demonstrated in Sect. 6. Therefore, the
problem of transferring the STS in a stretched condition and maintaining this state during descent is topical.

To study the longitudinal oscillation of the tether, we differentiate Eq. (3) twice and then substitute the
second derivatives of Eqs. (1) and (13) into it. Since l � a, we assume that the parameter a is small and
discard terms that contain it. We obtain the equation

l̈ + f (l, l̇) = 0.
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Fig. 11 Phase portrait; the solid line shows results for FA = 10 N and the dashed line results for FA = 100 N

We fix a point on the descent trajectory (fixed parameters Vi , γi , ϑi and ri ) and consider the oscillations of the
tether length.

The proposed principle of control is based on the fact that as the thrust increases, the tether length providing
tension, which compensates this force, also increases. We assume that the engine of the space tug can operate
in two modes, creating a constant thrust FA or FB (FB > FA). Let us consider the phase portrait l̇(l) shown
in Fig. 11 and the corresponding graph of the deviation of the length of the tether from the balance position
(Fig. 12). The thin solid lines correspond to thrust FA and dashed lines to thrust FB. Figure 11 illustrates that
the increase in thrust leads to a shift in the singular point to the right. The point sA corresponds to thrust FA
and the point sB to thrust FB. The area to the left of the vertical line l = l0 corresponds to the motion of the
STS with a slack tether. To the right of this line, there is a zone where the motion of the system is affected by
the tension force.

We suppose that the tether is initially slack, and the system is at point A0 (Figs. 11, 12). After switching
on the constant thrust FB, the representative point will move along the phase trajectory shown by the thick
dashed line in the figure. The tether will be stretched at point B1 but slack again some time later at point B2.
The purpose of the control is transfer of a representative point in a neighborhood of the equilibrium position
sB by the thrust switching on and off.

To translate the representative point on a trajectory located closer to the equilibrium position, it is necessary
to switch the thrust to FA at the point l = sB, l̇ > 0 (point A1). The representative point moves on a trajectory
around sA. This trajectory passes closer to the point sB than the initial trajectory. The thrust switches back
to FB when the representative point reaches the straight line l̇ = 0 (point A2). The described process can be
repeated multiple times, while the representative point does not appear at the required distance from sB.

8 Dynamics of the controlled motion of the STS

We simulate the descent of the SLD using the principle of control described in Sect. 7. We consider the STS
with the parameters specified in Sect. 4. Initially, the tether is slack, and the distance between points P and
C1 is 980 m. The axis of the SLD deviates from the local vertical by an angle of π/12. Calculations show that
up until entry into the atmosphere, the tether remains stretched and the angle of attack remains limited.

Figure 13 shows the change in height of the SLD with time and phase portraits that correspond to dif-
ferent points of the descent trajectory. The phase portraits are obtained using Eq. (13) for constant Vi , γi , ϑi ,
and ri . Figure 13 shows that, in the process of height reduction, there is a displacement of the singular
points (16) to the right. This effect is caused by reduction in the angle γ2 with decreasing SLD altitude.
From t = 9,154 s (H = 104 km), the aerodynamic moment exceeds the moment of the tether’s tension. At
t = 9,221 s(H = 88 km), the tether becomes slack and the motion of the SLD around the center of mass is
defined by the influence of the pitching moment.
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Fig. 12 Deflection of the tether’s length from position l0

Fig. 13 Phase portraits in various points of a trajectory

The tether slack in the final stage is caused by the difference in the drag forces acting on the SLD and on
the tug. The area of the cross section of the SLD surpasses the area of the tug’s cross section, and the SLD is
therefore decelerated by the atmosphere more quickly than the tug. As a result, the tug starts to catch up with the
SLD and the tether tension disappears. To prevent this situation, it is possible to place an inflatable balloon in the
tug. The balloon would provide a large cross section and allow effective braking of the tug by the atmosphere.

9 Conclusion

This study investigated a system that involves three elements: an active space tug as a mass point, an elastic
tether, and a large piece of debris as a rigid body. The simulation results show that the large debris significantly
affects the motion of the whole system. The motion of the space debris can lead to the tangling or rupture of the
connecting tether. The effect of the atmosphere can be neglected above an altitude of 300 km. As a result of the
aerodynamic force and moment and the thrust and gravitational torque, two modes for the tether are observed:
strained and slack. In the case of a slack tether, the SLD may begin to oscillate with increasing amplitude and
even pass into rotation. The SLD rotation is a dangerous situation, which can lead to tether rupture. A method
of thrust control, which provides a tension of the tether during the SLD deorbiting, is presented. Note also that
the slack tether is observed at atmospheric entry. This phenomenon is caused by the difference in drag forces
acting on the SLD and on the space tug. Further studies are needed to determine whether these findings can
be applied to actual system components.
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