
Available online at www.sciencedirect.com
www.elsevier.com/locate/asr

ScienceDirect

Advances in Space Research 56 (2015) 1493–1501
The motion of tethered tug–debris system with fuel residuals

Vladimir S. Aslanov ⇑, Vadim V. Yudintsev

Samara State Aerospace University (SSAU), 34, Moskovskoye shosse, Samara 443086, Russia

Received 17 February 2015; received in revised form 12 May 2015; accepted 23 June 2015
Available online 2 July 2015
Abstract

Active debris removal using a space tug with a tether is one of the promising techniques to decrease the population of large
non-functional satellites and orbital stages in near Earth orbits. Properties of debris should be taken into account in the development
of the space tugs. In this paper we consider the motion of a debris objects with fuel residuals that can affect the safety of the debris trans-
portation process. The equations of the attitude motion of the tug–debris system in a central gravitational field are derived. Stationary
solutions of the equations are found. The system of linearized equations are introduced that can be used for short term analysis. The
numerical simulation results are provided that show good accuracy of the linearized equations. Proposed equations can be used to
analyze the attitude motion of the tug–debris system and to determine the conventional parameters for safe tethered transportation
of space debris.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction and problem formulation

During the last years several active debris removal meth-
ods were developed (Dafu and Xianren, 2008; Forward
et al., 2000; Kitamura et al., 2014). Active debris removal
using tethered space debris is one of the promising tech-
niques to decrease the population of large non-functional
satellites and orbital stages on the near Earth orbit
(Jasper et al., 2012; Jasper and Schaub, 2014). Reference
(Bonnal et al., 2013) noted that there are two types of large
space debris: spacecraft and orbital stages. On the one
hand, orbital stages may be more easily deorbited because
they don’t have large appendages such as antennas and
solar panels. Tethered transportation of spacecraft with
flexible appendages is considered in Aslanov and
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Yudintsev (2014), Aslanov and Yudintsev (2014). In the
other hand orbital stages may contain fuel residuals that
affect to the deorbit process. The effect of liquid fuel slosh
on spacecraft has been explored in the literature
(Reyhanoglu and Rubio Hervas, 2012; Yue, 2011; Rubio
Hervas and Reyhanoglu, 2014). This literature considers
the control of vehicle with fuel slosh dynamics. The aim
of the present paper is to develop a simple mathematical
model of the tug–debris system with fuel in terms of a
multibody system model that can be used to analyze active
debris removal missions.

The paper is divided into four parts. In the Section 2
nonlinear equations of the system are obtained that
describe the motion of tug–debris system in a central grav-
itational field. The attitude motion near the stationary
point is considered in the Section 3. Simplified linear
equations are derived. The numerical simulation results
provided in the Section 4. These results show that simpli-
fied equations give a good approximation to the exact
solution.
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Fig. 2. The space debris and the space tug.
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2. Mathematical model

This section formulates the dynamics of the tug–debris
system. The debris is represented as a rigid body with fuel
sloshing mass. We suppose that the space tug has an atti-
tude control system that maintains required orientation
of the tug, so the tug is represented as a mass point. The
tether is considered as a massless rod. We use Lagrange
formalism to derive the equations of the relative motion.
A scheme of the system is shown in Fig. 1.

A solution of the general problem of oscillations of
residual fuel in a container is extremely difficult. Here we
use the simplest model where the sloshing liquid is modeled
as an equivalent pendulum model. Reference (Peterson
et al., 1989) demonstrates that equivalent pendulum model
can approximate motion of the fuel residuals (Reyhanoglu,
2010). This model can be used when the oscillations of liq-
uid are small (Abramson and Silverman, 1966; Ibrahim,
2005).

2.1. Kinematics of the system

The plain motion of the tug–debris system is considered
in orbital frame Cxoyo attached to the center of mass of the
entire system C. The motion of the system occurs through-
out the action of the thrust F and a central gravity force.
The thrust F is assumed to act along the axis Cxo.

The position of the debris relative to Cxoyo frame is
described by the angle hþ a and the vector R2. The angle
a defines the orientation of the tether. The angle h is an
Fig. 1. Orbit
angle between the tether and the longitudinal axis of the
debris (Fig. 2). The tether length is l1. The tether attach-
ment point is determined by the vector q1. We suppose that
the tether is attached at the longitudinal axis of debris

q1 ¼ fx1; 0gT . The attachment point of the equivalent pen-

dulum is defined by the column vector q3 ¼ fx3; 0gT . The
pendulum length is l3. The angle u of the pendulum with
respect to the debris longitudinal axis representing the fuel
slosh (Fig. 2). The column vector R2 denotes the position of
the center of mass (C2) of the debris relative to the frame
Cxoyo. The position column vector of the tug is expressed as

R1 ¼ R2 þ Aðhþ aÞ � q1 þ AðaÞ � exl1 ð1Þ

where ex ¼ ½1; 0�T is an unit column vector, AðaÞ;Aðhþ aÞ
are rotation matrices
al frame.
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AðaÞ ¼
cos a � sin a

sin a cos a

� �
;

Aðhþ aÞ ¼
cosðhþ aÞ � sinðhþ aÞ
sinðhþ aÞ cosðhþ aÞ

� �

Position of the pendulum (fuel lump) relative to the frame
Cxoyo can be computed as

R3 ¼ R2 þ Aðhþ aÞ � ðq3 � AðuÞ � exl3Þ ð2Þ

where

AðuÞ ¼
cos u � sin u

sin u cos u

� �
:

The motion of tug, debris and the fuel is considered rel-
ative to the center of mass of the system therefore we can
write

X3

i¼1

Rimi ¼ 0 ð3Þ

where mi is a mass of the tug ði ¼ 1Þ, space debris ði ¼ 2Þ
and fuel ði ¼ 3Þ. Using (3) we can eliminate R2 from the
expressions (1) and (2).

2.2. Kinetic energy and Lagrange equations

The kinetic energy of the relative motion of the tug deb-
ris and the fuel slug is given by

2T ¼
X3

i¼1

miV
2
i þ J zð _hþ _aÞ2 ð4Þ

where J z is the moment of inertia of the debris. We suppose
we know all the moments inertia of the debris J x; J y ; J z and
J y ¼ J z; V i ¼ dRi=dt is the velocity of the body i:

V1¼
1

M

l1 _aðm1�MÞsa� l3m3x3saþhþuþx2ðx1ðm1�MÞþm3x3Þsaþh

l1 _aðM�m1Þcaþ l3m3x3caþhþuþx2ðx1ðM�m1Þ�m3x3Þcaþh

� �

V2 ¼
1

M

l1m1 _asa � l3m3x3saþhþu þx2ðm1x1 þm3x3Þsaþh

�l1m1 _aca þ l3m3x3caþhþu �x2ðm1x1 þm3x3Þcaþh

� �

V3¼
1

M

m1ðl1 _asaþx1x2saþhÞ�ðM�m3Þðx3x2saþh� l3x3saþhþuÞ
�l1m1 _aca� l3x3ðM�m3Þcaþhþu�x2caþhðx3ðm3�MÞþm1x1Þ

� �

where

x2 ¼ _aþ _h; x3 ¼ x2 þ _u

The letters c and s with a variable or an expression in the
subscript denote the cosine and sine of variable or expres-
sion respectively. Gravitational force G i that act on the
body i is

Gi ¼ �
lmi

r3
i

ri ð5Þ

where l is the Earth’s gravitational parameter, ri is the
position vector of the body i relative to the Earth’s center

ri ¼ rþ Ri; i ¼ 1; 2; 3 ð6Þ
r ¼ f0; rgT is the position column vector of the system cen-
ter of mass. The column vector of the thrust force is

F ¼ fF ; 0gT . We assume F ¼ const.
The orbital frame Cx0y0 is a non inertial frame so we

have to add inertial forces

Ui ¼ �miðao þ xo � ðxo � RiÞ þ eo � Ri þ 2xo � V iÞ ð7Þ

where ao is acceleration of the system’s center of mass

ao ¼
�r€m� 2_r _m

€r � r _m2

� �
ð8Þ

xo; eo are the angular velocity and the angular acceleration
of the frame Cx0y0

xo ¼ f0; 0; _mgT
; eo ¼ f0; 0;€mgT

; ð9Þ

To get derivatives _r; _m;€r; €u let us write the equations for
the center of mass of the system in osculating elements
m; p; e; r (Okhotsimskii, 1964):

_m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1þ e cos mÞ

p
; ð10Þ

_p ¼ �2
pF
mv

; ð11Þ

_e ¼ �2
eþ cos m

mv
F ; ð12Þ

_r ¼ �2
cos m
mve

F ð13Þ

where m ¼ u� r is a true anomaly angle, p is the focal
parameter of the orbit, e is the eccentricity, r is the angle
of periapsis, v is the orbital velocity

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1þ e2 þ 2e cos mÞ

p

s
; ð14Þ

r is a distance of the center of mass of the system relative
to the center of the Earth

r ¼ p
1þ e cos m

: ð15Þ

The derivatives _r; _m;€r; €u can be obtained after differentiating
the Eqs. (13) and (15).

The space debris is considered as a rigid body, therefore
a gravitational torque should be taken into account
(Beletskii, 1966)

M2z ¼
3l
2r3

2

ðJ y � J xÞ sin 2ðhþ aÞ ð16Þ

The space tug and the fuel lump are considered as point
masses, so M1z ¼ M3z ¼ 0.

Now we can write generalized forces (Taylor, 2005)

Qk ¼
X3

i¼1

ðG iþUiÞ �
@Ri

@qk

þF �@R1

@qk

þMkz; k¼ 1;2;3: ð17Þ

where qk is a generalized coordinate

q1 ¼ h; q2 ¼ a; q3 ¼ u ð18Þ
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Using (4) and (17) we can build the differential equations
of the considered system

d
dt
@T
@ _qi
� @T
@qi

¼ Qi; i ¼ 1; 2; 3 ð19Þ
2.3. Simplified equations

The obtained Eq. (19) can be integrated but they are
very cumbersome and inconvenient for motion analysis.
To determine the stationary solutions and then to study
of the motion near the stationary point, let us write simpli-
fied equations taking the following assumptions.

� the orbit of the mass center is not changed r ¼ const, but
we take into account the non inertial motion of the orbi-
tal frame,
� the tether length is small relative to r.

The inertial forces can be simplified as follows. The cen-
trifugal force is

Uwi ¼ �m½ao þ xo � ðxo � RiÞ� ð20Þ

where xo ¼
ffiffiffiffiffiffiffiffiffi
l=r3

p
¼ const is the orbital angular velocity,

ao is a acceleration of the mass center

ao ¼ �x2
or ð21Þ

The second term of (20) can be rewritten as

xo � ðxo � RiÞ ¼ �x2
oRi;

so the centrifugal force get the form

Uwi ¼ mx2
oðrþ RiÞ ð22Þ

For the circular orbit

x2
o ¼

l
r3
; ð23Þ

so the expression (5) get the form

Gi ¼ �
lmi

r3
i

ri ¼ �x2
omi

r
ri

� �3

ri ð24Þ

The expression in the braces for Ri � r can be written

r
ri

� �3

� 1þ 2yi

r

� ��3=2

� 1� 3
yi

r

This simplification allows to rewrite G i

Gi � �x2
omi 1� 3

yi

r

h i
ri ð25Þ

The generalized forces get the form

Qk ¼F �@R1

@qk

þ
X3

i¼1

mi �
F

M
þ3x2

o

yi

r
r�2xo� vi

� �
�@Ri

@qk

þQ	k ; k¼ 1;2;3

ð26Þ

where xo ¼ f0; 0;xogT
; r ¼ f0; r; 0g; Q	2 ¼ Q	3 ¼ 0,

Q	1 ¼
3l
r3
ðJ z � J xÞ cosðhþ aÞ sinðhþ aÞ � J z€m ð27Þ
New generalized forces allow to write the simplified
equations of the motion, which will be used to study an
evolution of the system around stationary points. The
equations are given in the Appendix A.

3. Motion of the system near the stationary point

3.1. Stationary solution

Considered tug-tether–debris system can be represented
as a two mass system connected with a massless rod. In
central gravitational field this two mass system has two sta-
tionary points a01 ¼ 0 (unstable) and a02 ¼ p=2 (stable)
(Beletskii, 1966). Tug’s thrust F shifts stable stationary
point to a02 < p=2. This stationary point depends on the
tug’s thrust, length of the tether and masses of the tug
and the debris.

To determine the stationary solutions of the equations,
the derivatives are set to zero

_h ¼ _u ¼ _a ¼ 0; €h ¼ €u ¼ €a ¼ 0 ð28Þ
In this case, the system of Eqs. (19) converted to a
non-linear system of equations for the unknown angles
h0; a0;u0.

To simplify the search for solutions of this system let us
obtain an approximation to get the stationary solution of
the system. We equate Qa (26) to zero and set h ¼ 0 and
u ¼ 0. We get

ða cos a� FbÞ sin a ¼ 0 ð29Þ
where a; b are coefficients that depend on the parameters of
the system

a ¼ 3x2
0 ðx1 þ l1Þ2M1m1 þ ðx3 � l3Þ2M3m3

h
þ2m1m3ðl3 � x3Þðl1 þ x1Þ

i
b ¼ M1ðx1 þ l1Þ þ m3ðl3 � x3Þ
where M ¼ m1 þ m2 þ m3;Mi ¼ M � mi; i ¼ 1; 2; 3.

Fig. 3a demonstrates the generalized force Qa as a func-
tion of a. The figure shows two stationary points a01 ¼ 0
and a02 � 0:35. Fig. 3 is plotted for parameters presented
in the Table 1. Eq. (29) shows that the system has two sta-
tionary points. The first stationary point is determined by
the condition sin a ¼ 0. The second stationary solution is
determined by the condition

a cos a� Fb ¼ 0 ð30Þ
that exists only if Fb=a 6 1. Fig. 3b shows stationary solu-
tion a0 as a function of tether length l1 for F ¼ 0:3 N and
the parameters of the system that are presented in the
Table 1. Fig. 3b demonstrates that there is only one sta-
tionary solution for the tether length l1 < l	1 � 400 m

a0 ¼ 0; h0 ¼ 0: ð31Þ
There are two stationary solutions for l1 > l	1
a01 ¼ 0; h01 ¼ 0 and a02 > 0; h02 > 0: ð32Þ



Fig. 3. Generalized force Qa as a function of h and stationary point a0 as a function of the tether length.

Table 1
Parameters of the space tug and the debris.

Parameter Value Parameter Value

m1, kg 200 m2, kg 3000
m3, kg 500 l3, m 1
x3, m �1 x1, m 5
Jy ¼ J z; kg m2 10000 Jx; kg m2 3000

Fig. 4. Exhaust blast area of the space tug.
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To reduce the influence of the tether force to the motion
of the space tug tether length should be taken that results
only one stationary solution a ¼ 0. In this case, the dis-
turbing torque of the tether force N , acting to the tug is
minimal. Also the motion with a small angle a � 0 reduces
risk of tether rupture due exposure to the tug’s jet Fig. 4.
3.1.1. Linearized equations

After determining the stationary solutions we can con-
struct linearized equations of motion in the neighborhood
of the stationary point h0 ¼ a0 ¼ u0 ¼ 0.

We rewrite the kinetic energy of the system as a quadra-
tic form with constant coefficients

T ðq; _qÞ � T ðq0; _qÞ ð33Þ

where q0 ¼ ðh0; a0;u0Þ is the stationary point. In the
expressions for the generalized forces we set q ¼ q0 þ q̂,
were q̂ ¼ ðĥ; â; ûÞ are new variables that describe the devi-
ation from the stationary point q0. We expand the general-
ized forces in series of q̂ leaving only terms of first order of
q̂. Using the new expressions for the kinetic energy (33) and
the generalized forces we get equations in well know form

X3

j¼1

ðaij
€̂qj þ bijq̂jÞ ¼ 0; i ¼ 1; 2; 3 ð34Þ

A ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75; B ¼

b11 b12 b13

b21 b22 b23

b31 b32 b33

2
64

3
75 ð35Þ

The coefficients of the matrices A and B are

a11 ¼ 2l3m3ðm1x1 �M3x3Þ þ m1x1ðM1x1 � 2m3x3Þ
þ m3M3x2

3 þ J zM þ l2
3m3M3 ð36Þ

a12 ¼ a21 ¼ l3m3 m1ð2x1 þ l1Þ � 2M3x3 þ l3M3½ �

� m1m3x3ð2x1 þ l1Þ þ m1M1x1ðx1 þ l1Þ þ m3M3x2
3 ð37Þ

a13 ¼ a31 ¼ l3m3 m1x1 þM3ðl3 � x3Þ½ � ð38Þ

b11 ¼ ðx1ðm1ð6m3x
2
0ðx3 � l3Þ � F Þ þ FMÞ

� 3m1M1x
2
0x2

1 þ m3ð�Fx3 � 3M3x
2
0ðl3 � x3Þ2ÞÞ

þ Fl3m3 �
3ðJ z � J xÞMl

r3
ð39Þ

b12 ¼ b21 � 3lJ21

r3 ¼ x1ðm1ð�3x2
0ð2m3ðl3 � x3Þ

þl1M1Þ � F Þ þ FMÞ � 3m1M1x2
0x2

1

þm3ð3x2
0ðx3 � l3ÞðM3ðl3 � x3Þ þ l1m1Þ � Fx3Þ

þFl3m3 � 3ðJz�JxÞlM
r3

ð40Þ

b13 ¼ b31 ¼ l3m3ðF � 3x2
0ðm1x1 þM3ðl3 � x3ÞÞÞ ð41Þ



Fig. 5. The natural frequencies of the system as functions of the tether length l1 for F ¼ 0:3 N and as functions of F for l1 ¼ 100 m, j = 1,2,3.

Fig. 6. The solutions of the nonlinear h; a;u and linearized hL; aL;uL equations for to cases l1 ¼ 30 m (case 1) and l1 ¼ 300 m (case 2).
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a22 ¼ �2l1m1ð�M1x1 þ m3x3 � l3m3Þ þ 2l3m3ðm1x1

�M3x3Þ þ m1x1ðM1x1 � 2m3x3Þ þ m3M3x2
3

þ l2
3m3M3 þ l2

1m1M1 ð42Þ
a23 ¼ a32 ¼ l3m3 m1ðx1 þ l1Þ þM3ðl3 � x3Þ½ � ð43Þ
b22 ¼ l3m3ð6x2
0ðM3x3 � m1ðl1 þ x1ÞÞ þ F Þ þ F ðM1ðx1

þ l1Þ � m3x3Þ � 3x2
0ðm1M1ðx1 þ l1Þ2 þ m3M3x2

3

� 2m1m3x3ðx1 þ l1ÞÞ � 3l2
3m3M3x

2
0 ð44Þ
b23 ¼ b32 ¼ l3m3 F � 3x2
0 m1ðx1 þ l1Þ þM3ðl3 � x3Þ½ �

� �
ð45Þ



V.S. Aslanov, V.V. Yudintsev / Advances in Space Research 56 (2015) 1493–1501 1499
a33 ¼ l2
3m3M3 ð46Þ

b33 ¼ l3m3ðF � 3l3M3x
2
0Þ ð47Þ

Using the linear Eqs. (34) we can get the natural fre-
quencies of the system. The solutions of the Eqs. (34) have
the form

qj ¼ Cj sin kt; j ¼ 1; 2; 3 ð48Þ

Substituting (48) into (34) we get

detðAk2 � BÞ ¼ 0 ð49Þ

that allows us to find three frequencies k1; k2; k3. Fig. 5a
shows the frequencies of the system as functions of tether
length. Fig. 5b and as functions of the thrust F.
4. Numerical example

Let us compare the solutions of the nonlinear system
(19) to the solutions of the linearized system (34) with the
following initial conditions

h0 ¼ 0:1; a0 ¼ 0:3; u0 ¼ 0; _h0 ¼ _a0 ¼ _u0 ¼ 0: ð50Þ

The parameters of the system are shown in the Table 1.
The solutions are obtained for two cases. Case 1 for

l1 ¼ 30 m, F ¼ 2N and case 2 for l1 ¼ 300 m, F ¼ 2N.
The simulation results are shown in Fig. 6. The comparison
of results show good accuracy of the approximate lin-
earized model.
5. Conclusion

The motion equations of debris with the fuel residuals
during tethered transportation are derived. The stationary
solutions of the equations are found. The linearized differ-
ential equations with constant coefficients governing the
motion of the system near the stationary point are derived.
It has been demonstrated that the solutions obtained by
means of the linearized system are in good agreement with
the solutions of the original nonlinear system of equations.
The proposed simplified equations can be readily used in
practice to investigate the motion of the tug–debris system
with fuel residuals for different parameters of the system.
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Appendix A. The nonlinear equations of motion

ðJ 2
€hþ J 2€uÞM2 þ l3m3fx3 m3 m2 � 2Mð Þ þ m2

3 þM2
	 


þm1 x1 m2 þ m3 � 2Mð Þ þ m3x3ð Þ þ m2
1x1g _b2sb�c

þl1m1fl3m3Mca�c

þ½x1 m1 m2 þ m3 � 2Mð Þ þ m2
1 þM2

	 

� m3Mx3�ca�bg€a

þl3m3fl3 m3 m1 þ m2 � 2Mð Þ þ m2
3 þM2

	 

�½x3 m3 m2 � 2Mð Þ þ m2

3 þM2
	 


þm1 x1 m2 þ m3 � 2Mð Þ þ m3x3ð Þ þ m2
1x1�cb�cg€c

þf�l3m3½x3ðm3ðm2 � 2MÞ þ m2
3 þM2Þ

þm1ðx1ðm2 þ m3 � 2MÞ þ m3x3Þ þ m2
1x1�cb�c

þm1½2m3x3x1 m2 þ m3 � 2Mð Þ þ m2
3x2

3 þM2x2
1�

þm3x2
3 m3 m2 � 2Mð Þ þ m2

3 þM2
	 


þm2
1x1 x1 m2 þ m3 � 2Mð Þ þ 2m3x3ð Þ þ m3

1x2
1g€b

þ2l3m3fx3½m3 m2 � 2Mð Þ þ m2
3 þM2�

þm1½x1 m2 þ m3 � 2Mð Þ þ m3x3� þ m2
1x1g x0 _usu

þ2l1m1fx1½m1ðm2 þ m3 � 2MÞ þ m2
1 þM2�sh

þMl3m3shþu � m3Mx3shgx0 _a ¼

l3m3fx3½m3ðm2 � 2MÞ þ m2
3 þM2�

þm1 x1 m2 þ m3 � 2Mð Þ þ m3x3ð Þ þ m2
1x1g _c2sb�c

þ _a2l1m1fl3m3Msa�c � m3Mx3sa�b

þx1½m1 m2 þ m3 � 2Mð Þ þ m2
1 þM2�sa�bg þ 3J 21lM2p�3cbsb

�Fl3m3Msc � F ½x1ðm1ðm2 þ m3 � 2MÞ þ m2
1 þM2Þ

�m3Mx3�sb

3x0

2
fl2

3m3 m3 m1 þ m2 � 2Mð Þ þ m2
3 þM2

	 

s2c

�2l3m3½ðx3ðm2
1x1 þ m3ðm2 � 2MÞ þ m2

3 þM2Þ

þm1ðx1ðm2 þ m3 � 2MÞ þ m3x3ÞÞs2aþ2hþu � l1m1Mccsa�
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where c ¼ aþ hþ u; b ¼ aþ h.
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