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1. INTRODUCTION

When an SC descends in the atmosphere, it receives
a decelerating impulse formed by the de-orbiting brake
engine which transfers the SC from its initial orbit to
the descending one. When the propellant in the deceler-
ating engine burns out, the inertia–mass parameters of
the SC vary. The braking thrust vector should have a
prescribed magnitude and direction in space in order to
guarantee the condition of the SC transfer to the
required orbit of descent. As a rule, in order to do that,
gyroscopic stabilization of the SC longitudinal axis,
with which the braking thrust vector is related, is used.
One of the methods of gyroscopic stabilization is the
employment of the partial spin-up [1], when the stabi-
lizing block—the brake engine which is separated after
the propellant exhaustion and which carries away the
stabilizing gyroscopic moment—is rotated, while the
SC itself is not rotated, which allows one to increase the
SC effective mass due to the refusal to employ devices
of extinguishing the residual angular velocity.

The system of extinguishing the angular velocity of
stabilization of small SC (with a mass of up to 65 kg
and dimensions of up to 1 m) used in the domestic sys-
tems of remote sensing of the Earth’s surface (RSES)
and designed according to the scheme of a single solid
body is represented by two loads with masses of 400 g
on unwinding cables with a mass of 50 g fixed to the SC
mainframe in the fastenings allowing the cables to
extend at their total unwinding, which is known as the
Yo-Yo system [2]. At the first place the use of coaxial
SC allows one to increase the payload mass by 1 kg,
which is an appreciable value in relation to the mass of
an SC for RSEC itself. At the second place, a failure or
malfunction in operation of the Yo-Yo may lead to a sit-
uation, when, though the angular momentum of stabili-
zation exists, a statically stable SC will not be able to

level along the stream in the atmosphere, which will
result in a failure of the parachute system and, conse-
quently, in the loss of SC. Thereby, the scheme of coax-
ial SC seems to be more reliable, the more so that in
modern SC for RSES the brake engine is dropped off in
any case, otherwise the hatch of the parachute system is
blocked.

In the presence of perturbations the longitudinal axis
of SC may execute nutation–precession motion with
respect to the center of mass. Deviations of the longitu-
dinal axis and, consequently, of the thrust vector lead to
the transition to the orbit of descent differing from the
required computed orbit and, as a result, to an increase of
the region of scatter of landing points (Fig. 1).

We formulate a problem of constructing the equa-
tions of spatial motion of an SC which is a system of
coaxial bodies of varying mass, of obtaining the
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approximate solutions for the parameters of spatial ori-
entation of the system on a time interval corresponding
to the duration of operation of the de-orbiting brake
engine, and of determining the constraints imposed on
the inertial-mass parameters guaranteeing the smallest
values of nutation oscillations and stabilization errors.

Let us present the main parameters related to this
problem. As initial orbits from which the descent is
realized one may use circular orbits with heights of 200
to 300 km or elliptic orbits with heights of 300 and
200 km in apogee and perigee, respectively, and with
an inclination of 

 

65°

 

. 

Let us call 

 

the active leg of descent 

 

a short interval
of motion of SC of varying mass on which the brake
engine operates and decelerating impulse is applied.
The de-orbiting brake engine operates for 15–25 s, and
during this time the complete burnout of solid propel-
lant occurs.

It should be noted that in most problems of space
flight dynamics related to the impulse interorbital
maneuvers it is assumed that decelerating and acceler-
ating impulses are instantaneous, their magnitudes and
directions being specified [3]. However, as it was noted
above, both variation of the thrust direction and varia-
tion of the impulse magnitude due to its scatter around
the necessary direction may take place in the process of
SC motion. In our formulation of the problem we con-
sider more carefully the processes of generation of
impulses on a short but finite time interval of brake
engine operation taking into account the attitude
motion of SC.

2. THE EQUATIONS OF MOTION 
OF COAXIAL BODIES

Describing the motion of the systems of varying
composition let us use a hypothesis of a short-range
interaction [4, 5] on which the method by
I.V. Meshchersky is based. According to this hypothe-
sis the particles are thrown off only from a certain part
of the surface of the body of varying mass, and particles
that have no relative velocity with respect to the body-
fixed coordinate system are assumed to belong to the
body, while particles having (received) such a relative
velocity do not belong to the body and do not influence
its motion. In this case, the reactive forces and moments
are understood as a result of such a contact interaction
of the thrown off particles and the body only at the
instant of their separation from the main body.

The center of mass of the system moves with respect
to SC in the process of propellant burning. Let us write
the equations of motion in the coordinate system 

 

Oxyz

 

rigidly fixed to SC and having the origin at point 

 

O

 

coinciding with the initial position of the center of mass
of the system of bodies.

Let us introduce the following coordinate systems
(Fig. 2): 

 

M

 

ξηζ

 

 is the inertial coordinate system; 

 

OXYZ

 

is a mobile coordinate system whose axes remain col-
linear to the axes of the inertial system throughout the
time of motion; 

 

Oxyz

 

 and 

 

Ox

 

'

 

y

 

'

 

z

 

'

 

 are the coordinate sys-
tems fixed to SC (body 

 

2

 

) and brake engine (body 

 

1

 

),
respectively, rotating with respect to the 

 

OXYZ

 

 coordi-
nate system.

Let us write the expression of the theorem on varia-
tion of the angular momentum of a system with variable
mass [4]:

 

(2.1)

 

where 
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e

 

 is the principal moment of external forces,

 

M

 

R

 

 is the principal moment of reactive forces, and

 

 

 

×

 

 

 

v

 

ν

 

 is the sum of angular momenta of the

particles thrown off in the unit of time in their transla-
tional motion with respect to the immobile coordinate
system.

Equation (2.1) for the system of two coaxial bodies
can be transformed following a scheme suggested in [4]
to a form determining the theorem on variation of the
angular momentum with respect to the 

 

OXYZ

 

 coordi-
nate system [6]:

 

(2.2)

 

Here, 
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 is the radius vector of the center of mass of
the entire system varying due to variation of the mass,
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w

 

i

 

 and 

 

e

 

i

 

 are the absolute angular velocities and accel-
erations of bodies 

 

i

 

 (

 

i

 

 = 1, 2); 

 

K

 

i

 

,

 

 

 

O

 

 are the bodies' angu-
lar momenta calculated with respect to pole 

 

O

 

; 

 

m

 

 is the

mass of the entire system; 

 

 = 

 

r

 

C

 

 

 

×

 

 

 

F

 

 + 

 

 is the
moment of external forces relative to point 

 

O

 

 written
through the principal vector of external forces 

 

F

 

 and

principal vector of external moments  with respect
to the center of mass; and 

 

w

 

O

 

 is the absolute accelera-
tion of pole 

 

O

 

: 

 

w

 

O

 

 = (F + FR – e2 × mrC – mw2 × w2 ×
rC)/m, where FR is the principal vector of reactive
forces.

The right-hand side of relation (2.2) can be trans-
formed to the form

Let us consider the motion of SC, taking into
account only gravitational forces and neglecting other
external effects. In this case, for both flat and central
gravitational fields, taking into account the smallness of
SC dimensions with respect to the radius of the orbit,

we may assume that the moment  vanishes. Let
body 1 (brake engine) be a body of variable composi-
tion and body 2 (SC) be a body of constant composi-
tion. Let us consider the process of symmetric burning
of propellant in the brake engine, when particles are
thrown off strictly in the direction of longitudinal axis
without linear and angular thrust eccentricities. Then in
the process of variation of the composition of body 1,

dynamical symmetry is not violated, and moment 
of reactive forces with respect to the center of mass is
zero.

Let us write the angular velocities and angular
momenta of bodies in projections onto the axes of their
bound coordinate systems:

where Ai and Ci are the equatorial and longitudinal iner-
tia moments of body i calculated in the coordinate sys-
tems Oxyz and Ox'y'z' fixed to the bodies, and {i, j, k}
and {i', j', k'} are the unit vectors of the considered
coordinate systems.

Let us designate the angle and velocity of spin-up of
body 1 with respect to body 2 in the direction of the lon-
gitudinal direction Oz as δ and σ, respectively, where

σ = . The parameters of spatial orientation are shown
in Fig. 3.

MO
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e
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MC
e

MC
R
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K1 O, A1 t( ) p'i' A1 t( )q' j' C1 t( )r'k';+ +=

K2 O, A2 pi A2qj C2rk,+ +=

δ̇

On the basis of vector equation (2.2) one can arrive
at the following system of scalar dynamical equations
of motion of coaxial bodies [6]:

(2.3)

where D(t) = C(t) – A(t), C(t) = C1(t) + C2, A(t) = A1(t) +
A2, and Mδ is the moment of the internal interaction of
bodies (torsional moment of engine, the action of fric-
tion forces, etc.).

Kinematical equations for the angles of spatial ori-
entation (Fig. 3) have the following form

(2.4)

3. APPROXIMATE SOLUTIONS
FOR THE ANGLES OF SC ORIENTATION

When making an approximate analysis of motion let
us assume that the mass, longitudinal and transverse
inertia moments of body 1 (braking engine) decrease
according to a linear law, which is correct with a suffi-
cient accuracy for the solid-propellant rocket engines
used as brake engines with propellant charges of star-
shaped profile section and package-grain charges due to
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homogeneity of their burning. Let us take the following
linear laws of variation of the inertial–mass parameters:

(3.1)

where mi is the initial mass of the ith body, ν is the mass
consumption per second, Ai, 0, Ci, 0, A1, k, and C1, k are
the values of the equatorial and transverse inertia
moments of bodies corresponding to the beginning and
end of operation of the brake engine, and T is the time
of operation of the brake engine.

The quantities α and β in relations (3.1) represent
the coefficients of proportionality linking the values of
the moments of inertia of the brake engine with its mass
in the process of homogeneous burning of propellant
inside the volume. For example, for a cylindrical form
of the brake engine the following formulas are valid:

where H and R are the height and radius of the brake
engine and  is the coordinate of the center of mass
of the brake engine in Ox'y'z' coordinate system.

Let there be no interaction between coaxial bodies.
In this case it follows from the last two equations of
(2.3) that the longitudinal angular velocities are con-
stant: r = r0 and σ = σ0.

If the propellant burning is uniform, the coordinates
of the centers of mass  of individual bodies do not
vary, but the coordinate zC = zC(t) of the center of mass
of the whole system varies. If we take (3.1) into

account, the quantity m (t) in Eqs. (2.3) can be repre-
sented in the following form:

(3.2)

Since at the initial instant of time the center of mass
of the system coincides with the origin of the coordi-

m t( ) m1 m2 νt,–+=

A1 t( ) A1 0,
A1 0, A1 k,–

T
-------------------------t– α m1 νt–( ),= =

C1 t( ) C1 0,
C1 0, C1 k,–

T
-------------------------t– β m1 νt–( ),= =

C1 t( ) αm1 t( ), A1 t( ) βm1 t( ),= =

α 1
2
---R2, β H2

12
------ R2

4
----- zC1

2+ + 
  ,= =

zC1

zCi

ρC
2

mρC
2 t( )

m2zC2
m1 νt–( )zC1

+[ ]2

m1 m2 νt–+
--------------------------------------------------------=

=  
a b 1 χt–( ) c 1 χt–( )2+ +

κ 1 χt–( )+
--------------------------------------------------------------,

χ ν/m1, κ m2/m1, a m1zC2

2 κ2,= = =

b 2m1κzC2
zC1

, c m1zC1

2 .= =

nate system (zC(0) = 0), the following relations are
valid:

(3.3)

Let us introduce new dimensionless variables G and
F:

(3.4)

where ω = (r0(A1, 0 + A2 – C1, 0 – C2) – C1, 0σ0)/(A1, 0 + A2)
is characteristic angular velocity. Variable G in formu-
las (3.4) represents a dimensionless transverse angular
velocity of the system of bodies: G(t) = (psinF +
2qcosF)/ω, and phase F determines the angle between
the vector of the transverse angular velocity and the Oy
axis.

The first two equations of system (2.3) can be repre-
sented in the variables amplitude–phase by means of
substitution (3.4):

(3.5)

where D1 = m1(α – β)r0 – βm1σ0; D2 = (A2 – C2)r0,
a0 = A2κ – a; a1 = A2 + αm1 – b, a2 = αm1 – c.

Let us write down the exact solution to system (3.5)

for the case when, for example,  – 4a0a2 > 0:

where

Let us note that, if  – 4a0a2 ≤ 0, the solution can
be represented by inverse trigonometric and homo-
graphic functions.

These exact analytical solutions are cumbersome
and do not give informative presentation of the motion.

Since the mass of the system decreases, the follow-
ing condition is valid: 0 ≤ χt < 1. Expanding exact solu-
tions into series or, what is the same, expanding the
right-hand side of the second equation of (3.5) into
power series uniformly converging with respect to χt on
the interval χt ∈ [0, 1], neglecting the terms of the sec-
ond and greater orders of smallness, taking (3.3) into
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account, after integration we arrive at the approximate
solutions for the variables amplitude–phase:

(3.6)

where

(3.7)

Solutions (3.6) allow one to find the main character-
istics of the rotational motion accurate to the second
order, namely, the frequency of rotation ω and a small
quadratic correction to phase µt2.

According to (3.4), equatorial angular velocities are
determined by the following relations:

(3.8)

Relations (3.8) generalize formulas obtained in [1]
and [6], where the smallness of the value of the final rel-
ative displacement of the SC center of mass was
assumed, and also in the case when the mass is constant
(µ = 0).

Let body 1 (brake engine) rotate rapidly, body 2
being motionless with respect to the longitudinal axis
(r0 = 0), and the magnitude of the transverse angular
velocity of the system being small in relation to the
characteristic angular velocity ω,

(3.9)

We assume the orientation angles γ and ψ to be
small (γ = O(ε), ψ = O(ε)). Then the angle of nutation θ
(the angle between OZ and Ozi) is determined by the
following approximate formula:

(3.10)

Taking into account relations (3.8), (3.9), and (3.10)
let us represent kinematical equations (2.4) in the form

By virtue of our assumptions the value of  has a
higher order of smallness than  and . Therefore, one
can assume that on a small time interval of the propel-
lant outburn ϕ = const = 0. Then we can write for the
angular velocities  and 

(3.11)

G L0, F t( ) s0 ωt µt2,+ += =

µ 1
2
---

A1 0, A1 k,–( )k

T A1 0, A2+( )2
--------------------------------- n

A1 0, A2+
----------------------– 
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k A1 0, A2+( )ω;=

n
1
T
--- A1 0, A1 k,–( )r0 C1 0, C1 k,–( ) r0 σ0+( )–[ ].=

p t( ) ωL0 s0 ω µt+[ ]t+( ),sin=

q t( ) ωL0 s0 ω µt+[ ]t+( ).cos=

ε p2 q2+ / ω G L0  � 1.= = =

θ2 γ 2 ψ2.+≅

γ̇ ωL0cos F t( ) – ϕ( ), ψ̇ ωL0sin F t( ) – ϕ( ),= =

ϕ̇ γωL0sin F t( ) – ϕ( ).–=

ϕ̇
γ̇ ψ̇

γ̇ ψ̇

γ̇ ωL0cosF t( ), ψ̇ ωL0sinF t( ).= =

There exist two possible cases of the motion real-
ized when the following relations between the quanti-
ties hold:

(3.12)

Assuming for the sake of simplicity that the value of
frequency ω is positive, and using Fresnel integrals, for
both cases (3.12) one can write the following analytical
relations for the angles of orientation of the system
(upper and lower signs plus and minus correspond to
case 1 and case 2, respectively):

(3.13)

where

and

and

4. ANALYSIS OF NUTATION MOTION OF SC

It follows from solutions (3.13) that the angles of
spatial orientation depend on the combinations of the
initial conditions of motion, on initial values of inertia–
mass parameters of the system, and on their final varia-
tions. When SC is de-orbited, it is necessary to reduce
the deviations of the braking thrust vector from a cho-
sen direction, which corresponds to a decrease of the
opening angle of the nutation cone (Fig. 1). Let us
determine the conditions imposed on SC parameters
which guarantee that the value of nutation will decrease
in the process of motion of the system with varying
mass.

When SC is stabilized by partial spin-up [1], one of
the coaxial bodies (body 2) is not set into rotational
motion about its own longitudinal axis, and thus one
can assume that r0 = 0 and formula (3.7) takes the form

(4.1)
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---------,= =

C x( ) π
2
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 sin x are Fresnel integrals.d

0
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µ ω
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where ∆A = A1, 0 – A1, k, and ∆C = C1, 0 – C1, k are positive
finite variations of the values of the moments of inertia
of body 1 (brake engine).

For the practical problem of decelerating small SC
for RSES, conditions (3.9) and (3.10) hold, while iner-
tia–mass parameters of SC are specified by the follow-
ing ranges of variation in the process of the propellant
burnout: m ~ 65–50 kg, A1 ~ 3–1 kg m2, A2 ~ 3 kg m2,
C1 ~ 0.4–0.2 kg m2, C2 ~ 0.3 kg m2, and duration T of
the deceleration process does not exceed 25 s. These
values correspond to the case when the ratios of the
final variations of the values of the equatorial and lon-
gitudinal moments of inertia of the brake engine to the
initial total equatorial moment of inertia of SC and to
the initial longitudinal moment of inertia of the brake
engine, respectively, are small, and thus the following
conditions hold:

(4.2)

Let us introduce the instantaneous frequency

The largest (in absolute value) τ(t) will be small,

For approximate representation of the motion of the
system let us use the method proposed in [7] and con-
sider τ(t) as a parameter equal to the mean value

(4.3)

Taking (4.3) into account, approximate solutions to
Eqs. (3.11) will take the form

(4.4)

From expressions (3.10) and (4.4) follows the time
dependence of the angle of nutation

∆A/ A1 0, A2+( ) � 1, ∆C/C1 0,  � 1.

Ω t( ) Ḟ ω 2µt+ ω 1 τ t( )+( ),= = =

τ t( )
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--------------------------------------------------------t.=
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t
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1
4
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τ 1
8
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1 τ+
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γ t( )
L0

1 τ+
----------- Ωt s0+( )sin s0sin–[ ] γ 0;+≈

Ω ω 1 τ+( ).=

θ2 t( )
2L0

2

1 τ+( )2
------------------ 1 Ωt( )cos–[ ]=

+
2L0

1 τ+
----------- γ 0 Ωt s0+( )sin s0sin–( ){

– ψ0 Ωt s0+( )cos s0cos–( ) } θ0
2,+

Averaging over the fast phase ζ = t gives the fol-
lowing approximate formula:

(4.5)

where d = cos(f + s0), sinf = ,

cosf = .

Let us consider a particular case when d = 0, which
is realized when γ0 = ψ0 (in this case f = π/4) and when
p0 = q0 (in this case s0 = π/4), which can always be
reached by appropriate choice of the coordinate system.
Then it follows from formula (4.5) that in order to
diminish the mean angle of nutation it is necessary to
increase the sum 1 + , which is equivalent to the fol-
lowing conditions:

(4.6)

In this case the characteristic frequency ω has the
following value

(4.7)

The first condition of (4.6) is equivalent to the ine-
quality

(4.8)

If the velocity of relative spin-up of the bodies σ0 is
specified, and, as a consequence, at the fixed character-
istic frequency ω (4.7), the second condition of (4.6)
can be reduced to the condition of increasing absolute
value of  and has the form

(4.9)

It follows from conditions (4.8) and (4.9) that the
final variations of the moments of inertia of the brake
engine for the problems of decreasing the cone of nuta-
tion during the deceleration of SC, {∆A, ∆C}, are impor-
tant parameters. In practice these quantities determine
the form and inner location of the propellant charges
(solid packages of channel burning).

Figure 4 represents a straight line

(4.10)

determining the boundary of a subset admissible from
the point of view of reduction of the mean values of
nutation oscillations.

Condition (4.8) holds on the above admissible sub-
set and, consequently, a decrease of the mean values of
the angle of nutation takes place.
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The points {∆A, ∆C} located upon straight line (4.10)
and most distant from it satisfy condition (4.9). Figure
4 presents a set of points corresponding to the region of
possible parameters for SC which are enumerated
according to the decrease of the above noted distance,
for example, point 1 has the largest positive distance
(i.e., it is the best), while point 4 has the smallest nega-
tive distance (it has the worst combination of parame-
ters). The estimates obtained allow one to elaborate in
actual practice the recommendations related to the
location of the solid-propellant packs in the brake
engine. It is necessary that the process of propellant
burning should lead to such variations of the moments
of inertia that, first, the point of parameters {∆A, ∆C}
would be located above the boundary of the admissible
subset and, second, would be located at the largest dis-
tance from it. For example, this could be achieved by
positioning the propellant charges along the longitudi-
nal axis and at the smallest distance to it.

5. TRAJECTORY MOTION OF THE CENTER 
OF MASS AND ESTIMATION 

OF STABILIZATION EFFICIENCY

The spatial motion of coaxial bodies is character-
ized by the motion of the longitudinal axis of SC and,
consequently, by the direction of the vector of the brake
thrust. The efficiency of stabilization is determined by
the value of deviation of the final velocity of the SC
center of mass on the active leg of trajectory from its
known nominal value, which later determines the errors
in the initial conditions of transfer to the orbit of
descent, in SC enter into the atmosphere, and in the
scatter of landing points. In most problems of the
dynamics of space flight the decelerating and accelerat-
ing impulses are assumed to be instantaneous, and their
magnitudes and directions are assumed to be specified
[3]. The goal of the study of the trajectory motion of the
center of mass on an active leg in this paper is to ana-
lyze the process of formation of the brake impulse on a
short but finite time interval (taking into account the
spatial motion of SC) and also to determine the final
velocity of SC center of mass after generation of the
impulse.

During the time interval corresponding to a duration
of operation of the brake engine, SC in its passive
motion (with shut-down brake engine) traverse a part of
the initial orbit with a length of ~150 km, assuming that
it is circular and has a height of 250 km (the total length
of the orbit is 41599.742 km, the velocity of motion
along the orbit Vorb = 7.76 km/s), and the velocity vector
of the SC center of mass rotates in the plane of orbit
approximately to 1.3°. These remarks allow us to con-
sider with some accuracy the passive motion of the SC
center of mass on such an orbital section as uniform and
rectilinear motion. If we fix to the SC center of mass the
origin of a certain frame of reference Mξηζ whose axes
keep invariable directions in the absolute space, on the
considered orbital section it may be assumed to be iner-

tial, i.e., the gravitational field may be disregarded.
Therefore, the motion of the SC center of mass on the
active leg in Mξηζ coordinate system may be consid-
ered as a motion under the action of only a constant (in
its value) reactive thrust P. Of course, for a more accu-
rate description of the processes one should take into
account noninertiality of the Mξηζ coordinate system
and thus take into account gravitational forces. Such a
refinement presents no difficulties, the more so because
the spatial motion of SC studied above in this case does
not depend on gravitational forces and all obtained
results remain valid. However, there is no necessity to
do this in the context of the considered problem of esti-
mating stabilization effectiveness. This problem is to
reveal the influence of the SC spatial motion on the pro-
cess of formation of the brake impulse and on the tra-
jectory motion of the center of mass on the active leg.
Thus, at this stage of investigations gravitational losses
[8] in the increment of the velocity of the center of mass
are not taken into account. They can be calculated by
independent integration and added to the total incre-
ment of the velocity of the center of mass.

Let us consider the motion of the center of mass of
coaxial bodies on the active leg of the trajectory of
descent with respect to inertial frame of reference
Mξηζ whose axes Mζ and Mη lie in the plane of orbit,
while axis Mξ is perpendicular to the orbital plane
(Fig. 5). The axis Mζ corresponds to the calculated
direction of the braking impulse which is produced at
angle β to the direction of the motion along the orbit
(β ~ 55–45°).
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The constant force of the jet thrust corresponds to
the linear law of mass variation:

(5.1)

where ν = (m0 – mk)/m0T.
Let us write the equations of motion of the SC center

of mass in projections onto the axes of the Mξηζ coor-

m t( ) m0 1 νt–( ),=

dinate system, taking into account the SC spatial
motion in the OXYZ coordinate system (Figs. 5, 3):

(5.2)

where Vξ = , Vη = , and Vζ =  are the components
of the velocity of the center of mass.

After joint numerical integration of systems of
equations (2.3), (2.4), and (5.2) on the time interval T,
an estimate of efficiency of the stabilization system is
carried out. As a rule, in order to do that the following
criterion is used:

(5.3)

where |Vk | =  is the value of the final
velocity of the SC center of mass after operation of the
brake engine. Estimate (5.3) specifies the “angular”
error Π1 in the generation of the braking impulse corre-
sponding to the deviation of the vector of the final
velocity of SC center of mass on the active leg from the
direction of Mζ axis, which is assumed to be the calcu-
lated direction of the vector of velocity of the center of
mass. Admissible values of errors  have prescribed
values.
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Figure 6 presents the plot of the dependence of error
Π1 on the actual duration of the operation of the brake
engine; the numerals designate the dependencies corre-
sponding to the points from the region of parameters
(Fig. 4), while the bold line presents the dependence
corresponding to the best combination of the values—
point 1. It must be noted that the value of error Π1 is not
defined at T = 0, i.e., in case of emergency (brake
engine is not switched) one cannot speak of the effi-
ciency of its operation. It is also necessary to distin-
guish the computed duration of operation of the break
engine from the actual one, since various nonstandard
situations are possible, and thus the errors Π1 depend on
the actual duration of the brake engine operation. The
computations were performed for the following parame-
ters of the system and initial conditions of motion: A1, 0 =
2.5 kg m2, A2 = 2.5 kg m2, ë1, 0 = 0.9 kg m2, C2 =
0.3 kg m2, m0 = 65 kg, mk = 50 kg, ψ0 = γ0 = 0.1 rad, s0 =
0 rad, r0 = 0 rad/s, σ0 = 20 rad/s, p0 = 0 rad/s, q0 =
1.1 rad/s, Vξ0 = Vη0 = Vζ0 = 0 m/s, T = 25 s, and P =
1400 N.

It is evident from Fig. 6 that for the best point, all
other inertial–mass parameters and initial conditions of
SC motion being equal, the smallest mean values of
“angular” error are observed, and they decrease when T
increases. Thus, above analytical conditions (4.8) and
(4.9) of minimization of the values of angles of nutation
and, consequently, of the errors of stabilization of the
direction of braking impulse are confirmed. Conditions
(4.8) and (4.9) determine the form and inner location of
the propellant charges; therefore, they should be taken
into account when choosing the design parameters of
SC.

It should be noted that our results can be useful in
the analysis of angular motion of SC of other types
when they execute active maneuvers with variation of
mass.
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