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1. PROBLEM FORMULATION

Space tether systems (STS) differ from conven�
tional spacecraft in a great extension, variable config�
uration, and capability of interacting with the Earth’s
magnetic field [1]. Owing to these features the spec�
trum of tasks, where STS can be applied, is extremely
wide. These tasks include both various transportation
operations [2–5], and electric power generation [6, 7],
and deep space exploration [8, 9]. Some of these
projects can be implemented already now; others
demand more advanced technologies [10]. The
projects, which are planned to be realized in the near�
est future, have some specific features. First, many of
them suggest the use of radially oriented STS. For
example, the STS intended for sounding the Earth
surface will operate in such a regime [11]. Another task
suggesting the use of radial links is the problem of lift�
ing the load from a low�altitude orbit, when a docking
interface is dropped from an orbital spacecraft on a
tether, the system is oriented along the local vertical
and remains in such a position up to connection with
a load [12]. The second feature of mentioned projects
is STS construction on the multi�purpose spacecraft
basis, which imposes additional safety requirements,
because STS operation should not hinder and threaten
execution of other scheduled works and experiments.

Numerous research works are devoted to the prob�
lem of studying the STS dynamics. In the majority of
them the main attention is given to modeling the
tether, choosing the control law, and to studying stabil�
ity issues. In so doing, the ultimate bodies connected
by a tether are considered as material points [13, 14,

15]. Meanwhile, the tether can exert a significant
effect on the motion relative to the center of mass of a
carrying spacecraft [16], and the periodic character of
elastic radial tether oscillations makes premises for
origination of chaotic modes of motion which, ulti�
mately, can lead to tether reeling on a spacecraft [17].

This work states the problem of studying chaotic
modes of motion relative to the center of mass of a
spacecraft, carrying a radial elastic tether, and search�
ing for the techniques of avoiding chaotic modes on
the basis of methods of chaotic dynamics [18].

2. MATHEMATICAL MODEL

We consider the mechanical system consisting of a
spacecraft, weightless elastic tether, and a load (Fig.
1). The spacecraft represents a solid body with the
center of mass at point D1, and the load is a material
point D2. Spacecraft’s and load’s masses are m1 and
m2, respectively; A, B, and C are the principal
moments of inertia of the spacecraft.

We suppose the spacecraft’s center of mass to move
over a circular orbit with constant angular velocity

 where μ is the gravitational parameter, and
r is the geocentric distance. In the process of motion
the spacecraft is influenced only by the gravitational
moment and by the moment of tether tension force.
Let the tether be turned along the local vertical. The
radial position of the system is stable [19]. We also
assume the tether length to be considerably greater
than the spacecraft size, l  Δ, and considerably
smaller than the radius of orbit, l � r.

3,r −

ω = μ
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The STS kinetic energy is composed of spacecraft
kinetic energy T1 and load kinetic energy T2.

(2.1)

where α is the angle between spacecraft’s longitudinal
axis and the local vertical, V2 is the absolute velocity of
theload

x2, y2 are load coordinates in the inertial coordinate
system OXY:

where ϑ is the angle of true anomaly of the spacecraft’s
center of mass, and ϕ is the angle of tether deviation
from the local vertical.

The potential energy of a system is equal to the sum
of potential energy of the gravitational field WG [20]
and potential energy of an elastic tether WE

(2.2)

where  is the tether rigidity, E is the Young’s
modulus, S is the tether’s cross�section area, l0 is the
undeformed tether length. Since the spacecraft’s cen�
ter of mass moves over a circular orbit, μ = ω2r3 and

Let us consider the ratio r3/r2 appearing in the sec�
ond term. Supposing l/r and Δ/r to be small quantities
of order of ε, we expand it into a series having retained
the terms of the order of ε2:

2 2 2
21 2 2

1 2
1 ( ) , ,

2 2 2

m r m V
T C T

ω
= + α + ω =�

2 2 2
2 2 2,V x y= +� �

2

2

cos cos( ) cos( ),

sin sin( ) sin( ),

x r l

y r l

= ϑ − Δ α + ϑ − ϕ + ϑ

= ϑ − Δ α + ϑ − ϕ + ϑ

21 2
3

2

2
0

3 ( )cos ,
2

( ) ,
2

G

E

m m
W A B

r r r
cW l l

μ μ μ
= − − + − α

= −

1
0c ESl −=

2 3
2 2 2 22

1
2

3 ( )cos .
2

G
m r

W r m A B
r

ω
= −ω − + ω − α

3 3 2
2

2 2 2
2 2 2

2

2
2

2
2

1 2 cos

cos cos (1 3cos )
2

(1 3cos ) (2 cos cos sin sin ) .
2

r r r r
r x y l l

r r

lrl r

L

= ≈ ≈
+

− ϕ +

+ ϕ + Δ α − − ϕ

Δ
− − α + α ϕ − α ϕ Δ

Then

(2.3)

The Lagrangian of a system has the form

(2.4)

Now we write the Lagrange equations of the second
kind using the tether length l and angles α and ϕ as
generalized coordinates.
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where Qα = Ql = Qϕ = 0. Having resolved the Lagrange
equations for second derivatives, we get

(2.6)

In the case of vertical tether ϕ= 0,  and Eq. (2.6)
take on the form:

(2.7)

(2.8)

Considering Δ as a small quantity, we write Eq. (2.8) in
the form

or

(2.9)

where 

Equation (2.9) has the analytical solution

(2.10)

where  Presented equations are

valid in the case when the tether is at the extended
state. This condition is fulfilled, if

(2.11)

Substituting solution (2.10) into (2.7), we get

(2.12)
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where    Con�

dition (2.11) can be written as

(2.13)

The system’s dynamics is determined by the ratio
of coefficients a, c, and ε, which, in turn, depend on
STS characteristics. The form of a phase portrait of an
undisturbed system (ε = 0) depends on the parameter

(2.14)

Numerical calculations have shown that, for exam�
ple, for the STS, whose parameters are close to those
used within the framework of the YES�2 experiment
[21], coefficients c and ε have the same order of mag�
nitude, and for some values of V0 coefficient ε can
exceed c. In this case it makes sense to use, instead of
Eq. (2.12), the following equation

(2.15)

where  Equation (2.15) describes

the disturbed motion of a mathematic pendulum.

3. BIFURCATION DIAGRAM

The existence of a periodic disturbance in Eqs.
(2.12), (2.14) forms precondition for chaotization of
the spacecraft motion. A chaotic layer arises in the
environs of a separatrix of an undisturbed system. The
phase trajectory falling into this layer can result in
transition from an oscillatory mode of motion into
rotational one, which is quite dangerous, because it
can cause tether reeling on a spacecraft.

One of basic techniques of chaotic dynamics,
which allows one to estimate the chaotic layer thick�
ness, is the Melnikov method. To apply it, one should
obtain analytical solutions to homoclinic and hetero�
clinic trajectories of an undisturbed system:

(3.1)

The form of a phase portrait of Eq. (3.1) depends on
the parameter γ = c/a. Figure 2 presents the bifurca�
tion diagram and phase portraits obtained for various
values of γ. One can distinguish three zones on the dia�
gram: γ < –1, –1 ≤ γ ≤ 1, γ > 1. The solid and dashed
thick lines, shown on the diagram, correspond to sin�
gular points of center and saddle types on the phase
portrait of undisturbed system (3.1). White circles
mark the bifurcation points, at which a sharp recon�
struction of motion takes place. Examples of phase
portraits for each zone are given in Fig. 2.
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Saddle points, presented on phase portraits, are
connected by separatrices. Equation (3.1) has the
integral of energy

where W(α) = –acosα – c/2cos2α is the potential
energy, and h is the total energy. Substituting into this
equation as h the energy, calculated at a saddle point
αs, and separating the variables, we obtain:

Calculating this integral for various γ values, we obtain
the equations describing the motion over separatrices
(Table 1).

In the case γ < –1 two centers and three saddle
points are observed on the phase portrait (Fig. 2). Sep�
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aratrices divide the phase space into several zones:
three oscillatory and two rotational ones. Several sep�
aratrix�type trajectories can be distinguished in the
figure: heteroclinic, connecting saddle points αs = –π,
αs = π (k = 2, see Table 1) and homoclinic, connecting
the saddle point αs = 0 with itself (k = 1, see Table 1).
In the case –1 ≤ γ ≤ 1, two saddle points are observed
on the phase portrait (αs = –π, αs = π), which are con�
nected by a heteroclinic trajectory (k = 2, see Table 1)
and one center αs = 0. At γ > 1 one observes three cen�
ters (αc = –π, αc = 0, αc = π), and two saddles con�
nected by heteroclinic trajectories (k = 4, k = 5, see
Table).

According to (2.14), γ is a function of the system’s
parameters. Let us investigate the influence of these
parameters. Consider the second multiplier in (2.14):
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where R is the radius of cross�section of a tether. Hav�
ing in mind performed experiments and those planned
for the nearest future [1, 10, 12], let us estimate (3.2).
For this purpose we determine the minimally possible
order of a minuend and the maximally possible order
of a subtrahend. For currently existing STS projects
the tether can be a few tens of kilometers long, and the
mass of a load does not exceed one ton; therefore, the
minimal possible value of a minuend for existing pro�
grams is of the order of 10–8 kg–1 m–1. Near the Earth
surface the angular velocity is ω = 1.242 × 10–3 s–1, and
it decreases with increasing altitude of orbit. For the
modern materials, used for manufacturing space tethers,
the Young’s modulus has the order of 1011 N/m2. The
tether cross�section radius can constitute a value of the
order of 10–4 m. Substituting these values into (3.2),

we find that the maximum order of a subtrahend is
10–9 kg–1 m–1. Even such a rough estimation allows
one to conclude that for existing STS programs (and
for those planned for the nearest future) quantity (3.2)
is positive. In reality the difference between a subtra�
hend and minuend will be even greater, because the
load mass and the tether length influence both the
cross�section of a tether and the material of which it is
manufactured. The above analysis allows us to con�
clude that the sign of γ is determined by the ratio of
spacecraft’s moments of inertia (Fig. 3). For A < B the
coefficient γ is greater than zero, and for A > B it is
smaller.

According to (2.14), the absolute value of γ
decreases with increasing tether mass and load length,
and it grows with increasing Δ, modulus of elasticity,
and tether thickness. A change of the system’s param�
eters influences not only the form of a phase portrait of
an undisturbed system, but also the disturbing effect
value. At  the greatest contribution to system’s
dynamics is made by coefficient a, and at  coef�
ficient c produces biggest effect. Let us compare them
with ε

(3.3)

The smaller the parameters ηj, (j = 1, 2), the weaker
the influence exerted by a disturbance on a system.
The analysis of (3.3) indicates that an increase of E, S,
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and V0 results in increasing η1 and η2; an increase of m2

results in decreasing η1 and increasing η2; an increase
of l0 results in decreasing , ; and an increase of 
results in increasing  without influencing η1.

4. CHAOTIC MOTION

We construct Poincare’s cross sections for
Eq. (2.12). Let the STS have the following parameters:
m2 = 20 kg, А = 3000 kg m2, В = С = 104 kg m2, Δ= 1 m,
l0 = 30 km, ES = 5 kN, V0 = 0.01 m/s, and ω = 1.172 ×
10–3 s–1. In this case, coefficients of Eq. (2.12) are
equal to

 ε = 
Figure 4 shows the Poincare’s cross section. The

chaotic layer is seen in the environs of a separatrix of
an undisturbed system. One should note that the
thickness of this layer is rather small.

A more interesting picture is observed in the case of
strong disturbances. Figure 5 shows the Poincare’s
cross section for a system which differs from that con�
sidered only in the initial velocity V0 = 1 m/s. In this
case a = 2.473 × 10–4, c = 2.884 × 10–6, ε = 1.826 ×
10–4. Figure 6 shows the motion of a system with a =
2.479 × 10–3, c = 2.884 × 10–6, ε = 8.175 × 10–4 (m2 =
100 kg, V0 = 1 m/c, Δ = 2 m). It is seen that a rather
wide chaotic layer exists in the environs of a separatrix
of an undisturbed system. One can also notice the
existence of new zones of stable oscillations (A1 and
A2 in Fig. 6).

5. MELNIKOV METHOD

As it was noted above, the presence of chaos in a
system can result in some undesirable effects. Inclu�
sion of various dissipation components into a system
can serve as a technique of eliminating chaotic modes.
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For example, in paper [22] it was proposed to use a
spherical hinge. In this case one should take into
account in Eqs. (2.5) the force of viscous friction

which will result in appearance of the additional term
 in the right�hand side of Eq. (2.12)

 (5.1)

Here, δ is the damping coefficient. On the basis of
Melnikov method [6] we determine quantity δ suffi�
cient for eliminating chaotic modes.
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Now we rewrite (5.1) in the form suitable for the
use of Melnikov method 

(5.2)

where f1 = σ, g1 = 0, f2 = –a sin α – c sin α cos α,
g2 = –εsinαsinΩt – δσ. For disturbed system (5.2)
we write the Melnikov’s function:
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where index k determines expressions for a homo/het�
ero�clinical trajectory (see Table).

Now we simplify integral (5.7)
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Let us introduce a new parameter Δ0 = δ/ε; then the
chaos existence condition in system (5.6) can be writ�
ten as

(5.10)

By virtue of solutions presented in Table and integrals

 and  Δk depend on the STS parameters.

(5.11)

With the purpose of verifying condition (5.10) we
investigate the behavior of a disturbed system in the
separatrix environs. Let m1 = 6000 kg, m = 100 kg, A =
2500 kg m2, B = C = 104 kg m2, Δ = 2 m, l0 = 30 km,

( ) ( )
0 .k k

k I J
± ±

Δ < Δ =

( )kI
±

( ),kJ
±

0 0( , , , , , , , , ).k k A B C m l E S VΔ = Δ Δ

ES = 5000 N, and V0 = 0.01 m/s. The spacecraft moves
over a circular orbit at the altitude H = 250 km (p =
6621 km), its angular velocity equals ω = 1.172 ⋅ 10–3 s–1.
In this case the coefficients in the system (4.10) are
equal to: a = 2.482 ⋅ 10–3, c = 3.131 ⋅ 10–5, ε = 6.338 ⋅
10–5, Ω = 4.077 ⋅ 10–2, γ = 1.261 ⋅ 10–3, and the case
corresponding to k =2 is realized (see Table). Consider
now the behavior of a system in the presence of a dis�
sipative component in it. Let δ = 5 ⋅ 10–6, then

In this case condition (5.10) is fulfilled, and the
Melnikov’s function has simple zeros. Therefore,
chaos is present in the system, and phase trajectories
can intersect the separatrix going over from the region
of oscillation motions into the region of rotation and
vice versa (Figure 7). Figure 8 shows the Poincare’s
cross�section of a disturbed system.

As damping coefficient δ increases, the plot of the
Melnikov’s function is displaced downwards (Fig. 9);
in this case the difference between Δ0 and Δi decreases.

It is seen from Fig. 10 that at some value of  the
plots of functions Δ0 and Δi are intersected. In this
case, condition (5.10) ceases to be fulfilled, and no
chaos is observed in the system.

It is seen from Fig. 10, that quantity  has the

order of 10–4, which exceeds the order of c and ε coef�
ficients of system (2.12). In this case for applying the
approach described above it is necessary to use
Eq. (2.15). In this case the coefficients of system (5.2)

2
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become: f1 = σ, g1 = 0, f2 = –asinα, g2 = –ε(sinαsinΩt +
bsinαcosα) – δσ, and expression (5.4) is found as

Here, α
±
(t) and σ

±
(t) correspond to the case demon�

strated in Table. Addition of a new term into g2 does
not influence the Melnikov’s function in any way, and
condition (5.10) conserves its form.

Consider the spacecraft motion for δ = 5 ⋅ 10–4. In
this case ,   and condition
(5.10) is not fulfilled, the Melnikov’s function has no
simple zeros (Fig. 9) and there is no chaos in the sys�
tem. Figure 11 shows one phase trajectory for the ini�
tial conditions given above. It is seen that the trajectory
does not intersect the separatrix of an undisturbed sys�
tem, smoothly approaching the center 
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