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This paper presents a study of space elevator dynamics after the tether rupture due to its 

collision with a piece of space debris. The flexible heavy tether is modeled by a set of massive 

points connected by massless viscous bars. The tether is assumed to break at the 

geostationary orbit; its consequent motion is subject to gravitational and aerodynamic 

forces. Numerical simulation shows that, after entering the atmosphere, the majority of the 

tether segments are broken down by aerodynamic forces and smoothly descend to the 

Earth’s surface. This process is accompanied by formation of large loops, some of which can 

get beyond the atmosphere. Meanwhile, some parts of the tether reach the surface of the 

Earth with considerable speed, jeopardizing both spaceborne and ground objects in the 

equatorial plane.  

Nomenclature 

nC   = dimensionless coefficient of the normal aerodynamic force 

C   = dimensionless coefficient of the tangential aerodynamic force 

iD  = coefficient of internal friction for longitudinal oscillations of the i-th tether segment, kg∙m/s 

                                                           
1
Head of Theoretical Mechanics Department, Samara State Aerospace University, Theoretical Mechanics 

Department, Russia, Samara, Moskovskoye Shosse 34, 443086. 
2
Associate professor, Samara State Aerospace University, Theoretical Mechanics Department, Russia, Samara, 

Moskovskoye Shosse 34, 443086. 
3
Thomas Workman Professor and Chairman, McGill University, Department of Mechanical Engineering,  817 

Sherbrooke Street West, Montreal, QC, Canada  H3A 2K6, AIAA Fellow. 
4
Associate Professor, Coordinator of the Centre for Aerospace Science and Technologies, University of Beira 

Interior, Dept. of Electromechanical Engineering, Portugal, Covilhã, Calçada Fonte do Lameiro 6200-001, AIAA 

Senior Member. 



2 

 

Td   = diameter of the tether, m 

E   = modulus of elasticity of the tether, Pa 

AiF  = vector of aerodynamic force at point 
iP , N  

FRiF  = vector of friction force at point 
iP , N 

F    = projection of the resultant force onto the tangent plane, N 

iG  = vector of gravitational force at point 
iP , N 

 

0L    = length of the unstrained tether, m 

il  = length of the unstrained i-th segment of tether, m 

M
  = Mach number of the undisturbed flow 

im  = mass of i-th tether’s particle, m 

,j iN  = normal component of aerodynamic force at the j-th part of i-th tether´s section, N 

iq  = dynamic pressure at point 
iP , Pa 

iR  = vector of the normal reaction of the Earth surface at point 
iP , N 

cmr  = distance from the center of the Earth to the center of mass of the top part of the elevator, m 

ir  = radial distance of i-th tether’s particle from the center of the Earth, m 

GEOr  = radius of the geosynchronous orbit, m 

iS   = area of cross-section of the i-th tether part, m
2
 

,j iS  = area of the longitudinal section of the  j-th part of i-th tether section, m
2
 

  = kinetic energy, J 

iT  = vector of the tension in the tether sections 1i iP P , N 

cmV  = absolute velocity of the center of mass of the top part of the elevator, m/s 

iV  = velocity vector of point iP , m/s 

pV  = parabolic velocity, m/s 

xiV , yiV , ziV  = components of the velocity vector of the i-th point in OXYZ  reference frame, m/s 

W  = potential energy, J 
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AX  = aerodynamic drag, N 

iX , 
iY , 

iZ   = coordinates of the i-th point in 
i i iOX Y Z  reference frame, m 

ix , 
iy , 

iz  = coordinates of the i-th point in OXYZ  reference frame, m 

AY  = aerodynamic drag, N 

,j i   = angle between vectors 
1iρ  and 

iV  for  j-th part of i-th tether section, rad 

i  = elongation of the i-th tether section 

iL  = length of the i-th tether section, m 

   = loss factor, m 

   = adiabatic index of environment 

  = gravitational constant of the Earth, m
3
/s

2
 

s   = coefficient of sliding friction on the Earth surface 

r   = coefficient of static friction on the Earth surface 

ai   = atmospheric density at point 
iP , kg/m

3
 

i  = length of the i-th section of deformed tether, m 

,j iτ  = tangential component of aerodynamic force at the j-th part of i-th tether section, N 

C

iФ  = vector of Coriolis force at point iP , N 

cf

iФ  = vector of centrifugal force at point 
iP , N 

rot

iФ  = vector of Euler force of inertia at point iP , N 

E  = angular velocity of the Earth, rad/s 

 

I. Introduction 

Building a space elevator is supposed to decrease drastically the cost of cargo delivery into space avoiding 

expensive launchers. This project attracts nowadays attention of many members of space community, from 

engineers and scientists to environmentalists and lawyers, as well as potential investors all over the world [1, 2]. The 
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main idea behind most of space elevator proposals is to tether a base point at the Earth equator to a counterweight 

located beyond the geostationary orbit and to deliver payload to space by one or several climbers [3]. The first 

description of such structure appears as early as in 1960 [4], though the first rigorous studies are published a few 

years later [5, 6]. Their authors have used simple mathematical models to estimate the necessary strength of the 

space elevator's ribbon material. Pearson, in his fundamental study on the matter [7], investigates natural frequencies 

of the space elevator as a function of the system parameters and proposes a formula to calculate the cross section of 

the tether depending on the strength of the material, the planet mass, and the angular velocity of its rotation. His 

estimate for the upper limit for the length of an Earth space elevator rounds 144 000 km [7]. Towards the end of the 

20th century, NASA has funded several projects to develop technologies for the construction of space elevator; one 

of these projects has been led by Edwards. Several researchers have developed various designs of the space elevator 

based on contemporary technologies and identified the milestones for creation of the first space elevator. In his final 

report published in 2003, Edwards concludes that development of a space elevator would take 15 years [8]. Despite 

Edwards’ optimism, there are still several scientific and technologic issues waiting to be solved. Many researchers 

point out that the main obstacle for building a space elevator is the lack of sufficiently strong tether material [9, 10]. 

Another major challenge is to ensure survival of the structure. In the circumterrestrial space there is a large number 

of different-size moving objects which pose a serious threat to the relatively brittle tether. According to some 

experts, small space particles have caused the failures of SEDS-2 (1994) and TSS-1R (1996) experiments. By 

estimations of Edwards, space elevator would collide with meteorites with diameters more than 0.1 m at least once a 

year; a tether with diameter of several centimeters is likely to be destroyed within a  

week [11].  

The above problems, along with several other issues, such as tether deployment strategy [12] and tether/climber 

motion stabilization [13, 14], must be studied while developing a space elevator with more complex structure. Here 

we focus on one of the aspects that concerns safety of space elevator exploration and consider system dynamics after 

an eventual tether rupture. 

Destruction of a space tether due to collision with space debris is quite a probable scenario. Some aspects of a 

space tether system failure due to the tether rupture have been studied before, e.g., Bergamaschi [15] has studied 

tether motions after catastrophic failure of the cable linking a tethered subsatellite to the Shuttle. However, the 
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problem of space elevator destruction by space debris has not been considered yet in sufficient details. Most projects 

take it for granted that the tether, being rather thin, would safely burn in the atmosphere.  

The aim of this paper is to study the post-failure motion of a space elevator. We develop a mathematical model 

that takes into account the influence of aerodynamic forces and perform numerical analysis of the system dynamics. 

The study of behavior for the upper and lower parts of the elevator is done assuming that the tether rupture occurs in 

the vicinity of the geostationary orbit. Our analysis shows that the elements of the destroyed elevator can be a 

serious threat for both spaceborne and ground objects.  

II. Mathematical model for the dynamics of space elevator 

A. General remarks 

Consider a space elevator that consists of a tether of circular cross-section and a counterweight attached to the 

tether at its end. The system is deployed in the equatorial plane. Motion of any climber (cage) along the tether is not 

considered here. 

Mathematical model of motion of the space elevator after its destruction should take into account a number of 

important features. First, during the fall the tether is stretched unevenly and can contain loose parts. Secondly, the 

shape of the tether may considerably differ from a straight line. Thirdly, the tether's interaction with the atmosphere 

has significant influence on the system dynamics.  

A model of a tether as a heavy, thick, flexible string most adequately describes the physics of the process. It 

allows one to obtain the most accurate results, but its use is associated with considerable computing difficulties [16]. 

Therefore within the limited scope of this paper a simpler model that requires less computing resources is 

constructed. In this model, the tether is represented as a set of massive points connected by massless viscoelastic 

bars. When the number of points tends to infinity, the model describes a heavy flexible string; when the number of 

points is zero, one gets an elastic bar. This model has been used for the analysis of abnormal situations during 

implementation of YES-2 project [17, 18]. A similar model is presented in [19]; however, it does not account for the 

atmospheric influence, making impossible its utilization for analysis of the space elevator’s fall. 
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B. Model of the tether 

 The tether is divided into N  segments 
iL  ( 1, )i N  (Fig. 1) and each section is modeled by a particle 

iP  with 

mass 
im . The forces between two neighboring segments 

iL  and 
1iL   are modeled by a viscoelastic interaction of 

points 
iP  and 

1iP
, namely, by systems of spring and damper with stiffness and viscosity equal to those of the 

corresponding parts of the actual tether. That is, at each point 
iP  the forces 

iT  and 
1iT 
 are equal to the tensions in 

the tether sections 
1i iP P

  and 
1i iPP  

respectively. The point 
0P  is fixed on the surface of the Earth and the point 

1NP 
 corresponds to the counterweight. The section 

1i iP P
 of the tether is called the i-th section.  

 

Fig. 1 Multipoint model of the space elevator 

 

C. Vector equations of motion for the tether segments 

To obtain the equations of motion, we use a rotating Greenwich coordinate frame OXYZ . Point O  is the center 

of mass of the Earth, the plane OXY  coincides with the equatorial plane, the axis OX  is directed to the Greenwich 

meridian, the axis OZ  lies along the spin axis of the Earth, and OY  completes the right-hand system. This system 

rotates about axis OZ  with constant angular velocity 
E . 

Point 
iP  is subject to the following forces: gravitational force 

iG , aerodynamic force 
AiF , tensions from the 

neighboring parts iT  and 1iT , and the forces of inertia caused by rotation of the coordinate system, i.e., 

centrifugal force cf

iФ  and Coriolis force C

iФ  (Fig. 2). As the Earth rotates with constant angular velocity, the Euler 

force of inertia vanishes: 0rot

i Ф . One can write down the Newton second law for non-inertial system OXYZ in the 

form: 



7 

 

 

 
1

cf C

i i i Ai i i i im      r G F T T Ф Ф  (1) 

 

 

Fig. 2 Forces operating on the point 

 

We assume that the gravitational field of the Earth is Newtonian; in this case, the vector of the gravitational force at 

iP  has the form 

 

 
3 3 3

, , ,

T

i i i

i i i i

i i i

m m m
x y z

r r r

   
    
 

G  (2) 

 

To more accurately account for the gravitational field of the Earth, one can replace (2) by a more evolved potential 

represented as a series of spherical functions [20]. 

 The tether segments are subject to the forces of inertia caused by rotation of the Earth. The centrifugal force of 

inertia can be calculated as 

 

 ( ),cf

i i E E im   Ф ω ω r  
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where [0,0, ]T

E Eω  is angular velocity of the Earth rotation in the OXYZ  coordinate system. The Coriolis force 

of inertia can be found as 

 

 2 .C

i i E im  Ф ω V  

 

In OXYZ  system the vectors cf

iФ  and C

iФ  have components 

 

 

 

2 2; ; 0 ,

2 ; 2 ; 0 .

T
cf

i i E i i E i

TC

i i E i i E i

m x m y

m y m x

 

 

   

 

Ф

Ф

 (3) 

 

D. Tension in the tether 

The tension force vector is directed along the vector 
iρ  and has components: 

 

 1 1 1; ;

T

i i i i i i

i i i i

i i i

x x y y z z
T T T

  
  

   
  
 

T , (4) 

 

where 2 2 2

1 1 1( ) ( ) ( )i i i i i i ix x y y z z         . For the end segments 
0 2 0NT T   . The tension in the i-th tether 

segment can be found from the following relations [16]: 

 

 
 1 , 1,

0, 1,

i

i i i i

i

i

ES D
tT


 




  

 
 

 (5) 

 

where /i i il  , 1i i i  r r , i i

i

i

ES m
D

l
  [16]. 
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E. The aerodynamic forces acting on the tether segment 

To determine the aerodynamic force acting on tether segments connected at the point 
iP , one can represent each 

segment as a cylindrical rod bent in the middle (Fig. 3). For calculation of the aerodynamic forces, for simplicity, it 

was assumed that halves of tether segments 
i  and 

1i 
 adjacent to the point 

iP  move translationally with  the 

velocity of this point [21]. The tether segments are supposed to be quite small, so that the atmosphere density along 

each one of them is constant. 

 

 

Fig. 3 The aerodynamic forces at i-th part of the tether 

 

Consider one of the above cylindrical rods (Fig. 4).  During its motion in the atmosphere, the rod is subject to the 

aerodynamic force with a normal component 2,iN  and tangential component 2,iτ . Vector 2,iτ  is directed along the 

rod and can be calculated as 

 

 1

2, 2,

1

,i

i i i

i

C S q







ρ

τ  (6) 

 

where 2, 1 / 2i T iS d   . Vector 2,iN  is perpendicular to vector 1iρ  and lies in the plane formed by vectors iV  and  

1iρ . The modulus of this vector is 

 

 2, 2, .i n i iN C S q  
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Fig. 4 Interaction of the tether segment with the atmosphere 

 

To obtain the aerodynamic characteristics of the tether, one can use the method based on the Newtonian shock 

theory. For the case of hypersonic flow of a body in the rarefied atmosphere, this method provides good matching 

between the calculated and experimental data. For the cylinder one obtains the following relations [22]: 

 

 22
0, ( ) sin ,

3
nC C k     (7) 

 

where the coefficient k  depends on the velocity and atmospheric parameters: 

 

1

11
2

2 2

2 1 1
1 .

2 2 1
k M

M M


 

  





 

 
             

  

 

 

Then 

 

 
2 2

21

2, 2, 2,sin .
2 6

ai i ai i T i

i n i i

V V kd
N C S

  
   
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To express the vector 
2,iN  in terms of 

iV  and 
1iρ , one can notice that the vector 

2, 1i i i a V ρ
 
is orthogonal to 

both 
iV  and 

1iρ  and 
2, 1 2,sini i i iV  a . Cross product of 

2,ia  with 
1iρ  gives the vector 

2,in  which direction 

coincides with that of 
2,iN , and  

 

 
2

2, 2, 1 1 2,sin sin .
2

i i i i i ia V


    n  

 

Taking into account the above expression, the vector 
2,iN  can be represented as 

 

 
2, 2, 2, 2, 1 1

1 1

sin sin ( ) .
6 6

ai i T ai i T

i i i i i i i

i i

V kd V kd 
 

 
 

 

   N n V ρ ρ  

 

A similar expression can be obtained for the other cylinder: 

 

 1, 1,sin ( ) .
6

ai i T

i i i i i

i

V kd



  N V ρ ρ  (8) 

 

Now one obtains the principal vector of the aerodynamic forces at the tether segment: 

 

 1, 2, 1, 2, .Ai i i i i   F N N τ τ  (9) 

 

To determine the angles 1,i  and 2,i  we need to use the formula of the modulus of the scalar products: 

 

 1

1, 2,

1

cos , cos .i i i i

i i

i i i iV V
 

 




 
 

V ρ V ρ
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Taking into account (6)-(8), 
, 0j i τ  vanish and equation (9) can be written in the form 

 

 
1, 2,

1, 2, , , 1

1

sin sin
,

6

i iai i T

Ai i i i i i i

i i

V kd  

 




 
    

 
F N N n n  (10) 

 

where 

 

1 1 1 1 1 1

, 1 1 1 1 1 1

1 1 1 1

[( ) ( ) ]( ) [( ) ( ) ]( )

[( ) ( ) ]( ) [( ) ( ) ]( )

[( ) ( ) ]( ) [( )

j j i j j i j j j j i j j i j j

i j j j i j j i j j j j i j j i j j

j j i j j i j j j j

x x z z z x z z y y x x x y y y

y y x x x y x x z z y y y z z z

z z y y y z y y x x z

     

     

   

        

         

     

n

1 1

.

( ) ]( )i j j i j jz z x x x 

 
 
 
 

   

 

F. The scalar equations of motion for tether points 

Substituting (2)-(4) and (10) into (1), one arrives at the system of equations for motion of the i-th point of the 

elevator: 

 

 
21 1

1 3 33

1

21 1

1 3 33

1

3

,

, 0, 1

,

2

2 ,

i

x i

i
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i
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x i i i i i i

i i Aix i i i i i y i

i ii

y i i i i i i

i i Aiy i i i i i x i

i ii

z i i

i i Aiz i

i

dx
V

dt

dy
V i N

dt

dz
V

dt

dV m x x x x
m x F T T m x m V

dt r

dV m y y y y
m y F T T m y m V

dt r

dV m
m z F T

dt r


 

 


 

 



 





 







  



 
      

 
      

    1 1

1

1

.i i i i

i

i i

z z z z
T

 
 





 


 (11) 
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G. Motion of a the tether point on the Earth’s surface 

After a point of the tether falls on the surface of the Earth, its motion cannot be described any more by equations 

(11): in this phase of the motion, one has to take into account, apart from the above forces, the normal reaction of the 

Earth surface 
iR  and friction force 

FRiF .  Equation (1) now becomes 

 

 
1 .cf C

i i i Ai i i i FRi i im        r G F T T R F Ф Ф  (12) 

 

Assume that the Earth surface is spherical; in this case the force of reaction is collinear with the radius-vector of the 

point: 

 

 / .i i i iR rR r  (13) 

 

Projecting equation (12) onto the direction of the radius-vector, one obtains 

 

 1( )
0 .

cf C

i Ai i i i i i

i

i

R
r

     
 

G F T T Ф Ф r
 

Therefore 

 

 

2 2

2

2

1 1 1 1 1 1

1

1

2

( ) ( ) ( ) ( ) ( ) ( )
.

y i i x i iAix i Aiy i Aiz ii i i

i i E i E

i i ii

i i i i i i i i i i i i i i i i i i

i i

i i i i

V x V yF x F y F zm x y
R m m

r r rr

x x x y y y z z z x x x y y y z z z
T T

r r


 

 
     





  
   

         
 

 (14) 

 

The friction force is tangent to the Earth surface; its direction is opposite to the resultant force if the point is in 

rest and opposite to velocity vector if the point moves: 
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, 0;

, 0.

s i i i

FRi

r i i i

R if V

R if V



 

 
 

 

V
F

F
 (15) 

 

Substituting (2)-(4), (10), (13), and (15) to (12), one arrives at the system of differential equations for motion of 

a tether point on the surface of the Earth. 

 

H. Stationary solutions and the choice of initial conditions 

To determine the tether motion by means of the above model, it is necessary to define the initial positions and 

velocities of the tether segments. It is reasonable to assume that the tether is deployed along the Y  axis. Consider 

the tether divided in N segments with equal lengths 
0 /il L N

 
when unstrained.  To calculate the positions of points 

Pi  for the deployed tether, one should put the right hand side of Eq. (11) to zero and obtain stationary coordinates of 

the points as solutions to the system: 

 

 
2

12

0, 0, 0, 0, 0,

0 .

i i x i y i z i

i

i i i E i

i

x z V V V

m
T T m y

y




    

    
 

 

Here 1, 1i N  . From the last equation one obtains 

 2 1 1

12

0 0

1 1 0.i i i i

i E i i i

i

y y y y
m y ES ES

l ly


  



    
         

   
 (16) 

 

Since the tether is anchored to the Earth, 
0 Ey R  (here 

ER  is the radius of the Earth), and for the last segment 

2 1N Ny y  . Now the initial positions of points Pi for i=1, …, N  can be found as solutions to the non-linear system 

of equations (16). 
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III. Simulation of motion of the space elevator after tether rupture 

Based on the system of differential equations constructed in the previous section, the program simulator 

TetherCalc (http://www.termech.ru/en/tethercalc.html) has been developed and several numerical experiments have 

been carried out. To increase the accuracy of simulation in the computing module of the program, the algorithm of 

additional division of tether in the atmosphere segment has been implemented. 

A. Parameters of the space elevator 

In this paper, the design of the space elevator proposed by Edwards, as the most thoroughly described at the 

moment, is used [11]. The tether material is chosen to be a carbon nanotubes fiber. Its density is 1300 kg/m
3
, tensile 

strength is 130 GPa, and Young's modulus is 630GPa.  Edwards considered a multicore tape tether; however, 

modeling of the dynamics for such tether is extremely difficult for it can twist about the longitudinal axis due to the 

action of aerodynamic and other disturbing forces. A model with simplified aerodynamic properties, namely, a 

homogeneous tether with circular cross-section is used here. Edwards suggests using a tape of width from 0.05 m to 

0.115 m and thickness of 1.5 micron; the suggested tape profile is presented in Fig. 5 [11]. A tether of equivalent 

circular section with diameter from 42.6 10  m to 43.8 10  m is used. The length of the tether is 117000 km, its 

mass 5000kg. The counterweight is assumed to be the upper stage of a launch vehicle with mass 3500kg. It is also 

assumed that the points of the tether after touching the surface of the Earth do not slip, but stick to the ground. 

 

 

Fig. 5 Tether tape profile 
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B. Motion of space elevator without atmosphere influence 

Consider a case when tether rupture occurs close to the geostationary orbit. For simulation, the tether is divided 

into 500 segments of identical length (when unstrained). Numerical simulations show that after rupture the top end 

of the tether with the counterweight moves away from the Earth, and the lower end moves towards the Earth. Under 

the influence of the Coriolis force, the tether deviates from the local vertical (Fig. 6) and wraps around the Earth in 

the direction of its rotation (Fig. 7). If the influence of the atmosphere is not considered, the 40,000 km tether falls to 

the Earth in approximately 9000 s. More crude modeling with division of the tether in 30 points has not led to 

qualitative changes of the results. 

 

 

Fig. 6 Influence of Coriolis force on tether part motion 

 

 

 

Fig. 7 Motion of the lower part of the tether after rupture at a planet without atmosphere 
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The calculation of the tension in the tether shows that it does not exceed the strength limit for carbon fibers. If 

the elevator is made of an already available material with tensile strength approximately 5GPa, the rupture may 

occur in the final stage, when the tether already has circled almost half of the Earth circumference. If the 

atmospheric influence is not taken into account, the tether lays down on the surface of the Earth quite regularly. 

It is convenient to consider the motion of the upper part of the elevator in the fixed inertial coordinate frame 

i i iOX Y Z  connected to the center of the Earth and coincident with the rotating Greenwich coordinate system OXYZ  

at the initial moment of time. In this case, the coordinates and velocities of points in the inertial system are 
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First of all, note that at the instant of rupture the velocities of the tether points are orthogonal to the local vertical. 

On the other hand, the specific energy of the cut part of the tether is higher than that of the whole elevator. Therefore 

one can conclude that, whatever the consequent orbit of the upper part is, the position of rupture corresponds to a 

perigee and so the cut part will never hit the Earth.    

If we considered a material point then on the basis of its height and speed it would be possible to draw a 

conclusion on the type of trajectory, if one compares them to the value of parabolic speed 2 /pV r . If the speed 

of the point is less than pV , it moves on the closed elliptic trajectory; if it surpasses pV , the point escapes the Earth 

on a hyperbolic trajectory. In the case considered here, the center of mass of the elevator's top part has the velocity 

exceeding the parabolic velocity pV  [23]. The upper end of the elevator is a large scale structure, and its orbit after 

breakage is not Keplerian. However, some estimation can still be done. Figure 8 shows the trajectory of the center of 

mass of the top part of the elevator and the trajectory of a point with equal mass, and position and velocity of the 

center of mass in the initial moment of time in inertial coordinate system i i iOX Y Z . 
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As the space elevator rotates around an axis passing through the center of the Earth with angular velocity equal 

to the angular speed of the Earth, the absolute velocity of the center of mass of the top part 
cmV  at the moment of 

breakage can be found as  

 

 3/ ,cm E cm cm GEOV r r r    (17) 

 

Comparing (17) with the expression for parabolic velocity, it is possible to estimate the boundary value 
cmr  as  

 

 3 2 .cm GEOr r  (18) 

 

If, after rupture, the distance to the center of mass of the top part surpasses (18), this part will escape the Earth on a 

trajectory close to hyperbolic.  

 

 

Fig. 8 Motion of the top part of the space elevator after rupture 
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To verify correctness of the numerical model, the energy integral is constructed. As dissipative forces do not act 

on the top end of the space elevator, the system is conservative and its full mechanical energy should be constant. 

Kinetic energy can be found as 
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where j  is the number of first point of top part of elevator. Potential energy is the sum of potential energy 

associated with the gravitational field and strain energy of the stretched cable: 
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Time variation of kinetic and potential energy and of their sum are shown in Fig. 9. The total mechanical energy 

remains constant which testifies that the developed mathematical model does not contradict basic mechanical 

principles and the result of numerical integration adequately describe the motion. 

 

Fig. 9 Dependences of kinetic, potential and total energy on time 
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C. Motion of the tether in the atmosphere 

Influence of the atmosphere change considerably the tether dynamics, leading to quite interesting effects. Since 

friction force between the tether and the air is not considered, the aerodynamic force does not have a component 

tangent to the tether segment. This results in damping of the component of the velocity 
nV

 
perpendicular to the 

respective section of the tether, while the longitudinal component 
tV  does not change (Fig. 10).  This effect is most 

pronounced at the initial stage of tether fall when points "slide" along the tether line. The behavior of the tether 

points is shown in Fig. 11. 

 

 

Fig. 10 Damping of the normal component of velocity of the tether's point by aerodynamic force 

 

 

Fig. 11 Tether position at different moments of time 
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The tether falls to the ground with increasing velocity and the aerodynamic force is proportional to the square of 

velocity, so the effect of atmosphere on tether motion increases with time. Consider a small element of the tether 

subject to aerodynamic force that can be decomposed into a lifting force 
AY  and aerodynamic drag 

AX  (Fig. 12). 

According to (10), the modulus of aerodynamic force is proportional to the sine of the angle between the 

longitudinal axis of the tether segment and its velocity vector. If this angle is close to / 2 , the motion of the tether 

section is strongly influenced by the aerodynamic drag which tends to reduce the velocity. In this case, the tether 

wraps around the Earth unevenly, slowing down in the atmosphere. 

 

 

 

Fig. 12 The aerodynamic force acting on the tether element 

 

 If the angle is small, the lifting force makes significant impact on the motion of the tether segment (Fig. 13a). 

Under the influence of aerodynamic and Coriolis forces, the tether starts to deviate from the vertical position (Fig. 

13b). If its velocity after atmospheric entry remains large enough, the respective part of the tether rises under the 

influence of the lifting force as though it ricochets from the atmosphere (Fig. 13c), dragging other parts of the tether, 

which leads to formation of a loop. When its height increases, both the atmospheric density and the aerodynamic 

force decrease, and the gravitational force becomes predominant. The tether turns downwards and the loop falls to 

the Earth (Fig. 13d).  

 The described phenomena is illustrated in Figure 14 that shows the tether at t=3500s. One can identify  parts of 

the tether with different types of behavior: a loop leaving atmosphere, intervals of smooth descent, and also the parts 

that reach the ground with rather large velocity. 
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Fig. 13 Formation of a loop 

 

 

Fig. 14 Profile of the tether at t=3500s 

 

IV. Conclusions 

Analysis of space elevator dynamics after failure presented here shows that the problem is rather complex and 

worth studying in detail. We focus on the case when the tether is destroyed by space debris in the vicinity of the 

geostationary orbit, and consider motion of the upper and lower parts of the system after rupture. The mathematical 

model developed for this purpose represents the flexible heavy tether of circular cross-section as a set of massive 

points connected by massless viscoelastic bars. The model takes into account the interaction of the tether with the 

Earth atmosphere during the fall. The approximate expression (18) for boundary value of distance to the center of 

mass of the top part was obtained. If the distance to the center of mass of the upper part surpasses the boundary 

value, this part will escape the Earth on a trajectory close to hyperbolic. For lower part numerical simulations show 

that the aerodynamic force changes significantly the tether behavior. After the tether enters the atmosphere, most of 
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it slows down and falls smoothly; however, one can notice also quite unexpected motions, such as formation of large 

loops that can get out the atmosphere. Analysis reveals that some segments of the tether reach the ground with rather 

large velocities. One can conclude that the rupture of the space elevator ribbon can jeopardize both spacecraft and 

objects on the Earth’s surface located close to the equatorial plane. 
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