МЕХАНИКА ТВЕРДОГО ТЕЛА № 2 • 2005

УДК 531.38

© 2005 г. В.С. АСЛАНОВ

движение вращающегося тела в сопротивляющейся среде

В нелинейной постановке рассматривается движение вращающегося твердого тела в сопротивляющейся среде под действием синусоидального или бигармонического восстанавливающего момента, зависящего от времени, и малых возмущающих моментов. Приведены факторы, определяющие возмущения, в виде медленно меняющихся параметров и параметров малой асимметрии. Даны решения уравнений невозмущенного движения в эллиптических функциях Якоби. Для случая, когда нутационный момент определяется бигармонической зависимостью от угла нутации, уравнения невозмущенного лвижения записаны в переменных действие-угол, которые выражены через полные эллиптические интегралы. Построены усредненные уравнения движения осесимметричного тела при действии бигармонического и малых демпфирующих моментов. Уравнения возмущенного движения асимметричного тела приведены к стандартной двухчастотной системе, и построена частично усредненная система. Получены необходимые и достаточные условия устойчивости нелинейных резонансов и устойчивости движения системы по Ляпунову в окрестности стационарной точки под действием малых возмущений. Приведен численный пример, в котором показано, что из устойчивости резонанса не следует устойчивость движения в окрестности стационарной точки и наоборот.

1. Тело в сопротивляющейся среде. Уравнения возмущенного движения. Развитием классической задачи о движении тяжелого твердого тела вокруг неподвижной точки в случае Лагранжа является задача о движении твердого тела в сопротивляющейся среде. Примером такого тела является космический аппарат (КА), спускающейся в атмосфере планеты. Если КА является идеальным телом вращения как в динамическом, так и в геометрическом смысле и восстанавливающий аэродинамический момент пропорционален синусу пространственного угла атаки – угла нутации, то движение тела в атмосфере описывается теми же уравнениями, что и волчок Лагранжа [1]. Различие заключается лишь в том, что множитель перед синусом угла нутации есть медленно меняющаяся величина, а не постоянная, как в случае Лагранжа. Задача существенно усложняется, если рассматривать более общий случай, когда тело имеет малую динамическую асимметрию, точка приложения аэродинамических сил и моментов находится на оси симметрии геометрической формы, а центр масс тела смещен с этой оси (фиг. 1). Тело в потоке можно представить как совокупность двух тел с различными свойствами (фиг. 1): внутреннее тело 2, имеющее массу, и внешнее тело 1, не обладающее массой, с заданной геометрической формой. Эти тела жестко связаны и образуют единое твердое тело с геометрическими характеристиками внешнего тела и динамическими характеристиками внутреннего тела. Аэродинамические силы и моменты определяются внешним телом, а инерционно-динамические характеристики тела внутренним телом.

Для описания движения тела в потоке необходимо ввести в рассмотрение три системы координат (фиг. 1): систему *Oxyz*, связанную с внутренним телом и осью дина-

Фиг. 1

мической симметрии; систему $O_1 x_1 y_1 z_1$, связанную с внешним телом, в которой задаются аэродинамические силы и моменты; систему координат $O\xi\eta\zeta$ с поступательно движущимися осями. Связанная система координат Oxyz имеет начало в центре масс твердого тела, ось Ox - ось динамической симметрии. Система Oxyz расположена так, что центробежный момент инерции тела $I_{yz} = 0$. Система координат $O_1 x_1 y_1 z_1$ связана с плоскостью угла нутации θ . Точка O_1 лежит в некоторой фиксированной точке геометрической оси симметрии тела. Связанная система Oxyz повернута относительно системы $O_1 x_1 y_1 z_1$ на угол собственного вращения φ . Точка O_1 в связанной системе Oxyz определяется вектором $\rho(x_c, y_c, z_c)$. Связь между системой координат $O\xi\eta\zeta$ и связанной системой Oxyz осуществляется с помощью углов Эйлера ψ , θ , φ .

Асимметрия проявляется в несовпадении точки O_1 приложения аэродинамических сил и моментов с центром масс. Поперечное смещение точки O_1 относительно центра масс ($y_c \neq 0, z_c \neq 0$) вызывает появление дополнительных моментов от аэродинамических сил X и Y (фиг. 1). Различие поперечных моментов инерции тела ($I_y \neq I_z$) и перекос главных центральных осей инерции относительно осей связанной системы координат ($I_{xy} \neq 0, I_{xz} \neq 0$) также является причиной асимметрии.

Вектору асимметрии $\Delta\xi$ припишем порядок малости є: $\Delta\xi = (\bar{y}_c, \bar{z}_c, \bar{\Delta}, \bar{I}_{xy}, \bar{I}_{xz}, \Delta m_x, \Delta m_y, \Delta m_z) = O(\varepsilon)$, где $\bar{y}_c = y_c/L$, $z_c = \bar{z}_c/L$ – относительное поперечное смещение центра масс с геометрической оси симметрии (L – характерный размер тела, например, диаметр); $\bar{\Delta} = (I_z - I_y)/I$ – безразмерная разность поперечных моментов инерции ($I = (I_y - I_z)/2$); $\bar{I}_{xy} = I_{xy}/I$, $\bar{I}_{xz} = I_{xz}/I$ – безразмерные центробежные моменты; $\Delta m_x, \Delta m_y, \Delta m_z$ – коэффициенты малых возмущающих аэродинамических моментов.

Пусть на тело в потоке действуют следующие моменты: восстанавливающий момент, малые демпфирующие моменты, пропорциональные проекциям угловой скорости, и малые возмущающие моменты, вызванные асимметрией формы. Восстанавливающий момент является нечетной функцией угла нутации θ и может

быть представлен для весьма широкого класса форм тел в виде бигармонической зависимости:

$$M = M_{\theta}I = (a\sin\theta + b\sin2\theta)I \tag{1.1}$$

Синусоидальная характеристика (b = 0) описывает тела близкие по форме к сфере или к тонкому конусу [2], однако если тело имеет более сложную форму, допускающую наличие балансировочного положения, отличного от значений $\theta = 0$, π (фиг. 2), то следует использовать бигармоническую зависимость (1.1). Если восстанавливающий момент тела аппроксимировать нечетным рядом Фурье с числом членов n > 2, когда коэффициенты при гармониках с номерами n > 2 малы по сравнению с a или b, то эти члены могут быть включены в малые возмущающие моменты.

Известно, что для случая Лагранжа обобщенные импульсы, соответствующие углам собственного вращения и прецессии, являются первыми интегралами системы и представляют собой проекции кинетического момента на ось симметрии тела и ось прецессии [3]. Имея в виду, что при движении тела в потоке ось прецессии совпадает с направлением вектора поступательной скорости, представим указанные обобщенные импульсы, отнесенные к среднему поперечному моменту инерции *I*, в следующем виде:

$$R = \bar{I}_x \omega_x, \quad G = R \cos\theta + (-\omega_y \cos\varphi + \omega_z \sin\varphi) \sin\theta$$
(1.2)

где $\omega = (\omega_x, \omega_y, \omega_z)$ – вектор угловой скорости в проекциях на оси системы *Oxyz*; $\bar{I}_x = I_x/I$ – безразмерный момент инерции тела относительно оси *Ox*.

В силу действующих малых возмущений величины R и G будут медленно изменяться во времени. Выбирая их в качестве новых переменных, уравнения движения тела в потоке представим в виде [4]:

$$\begin{aligned} \ddot{\theta} + (R - G\cos\theta)(G - R\cos\theta)/\sin^3\theta - M_{\theta}(\theta, z) &= \varepsilon \Phi_{\theta}(\theta, \phi, z) \\ \dot{\phi} &= R/\bar{I}_x - (G - R\cos\theta)\cos\theta/\sin^2\theta = \Phi_{\phi}(\theta, z) \\ \dot{\psi} &= (G - R\cos\theta)/\sin^2\theta = \Phi_{\psi}(\theta, z) \\ \dot{z} &= \varepsilon \Phi_z(\theta, \phi, z) \\ \varepsilon \Phi_{\nu}(\theta, \phi, z) &= D_0^{\nu}(\theta, z) + D_1^{\nu}(\theta, z)\sin\phi + D_2^{\nu}(\theta, z)\cos\phi + D_3^{\nu}(\theta, z)\sin2\phi + D_4^{\nu}(\theta, z)\cos2\phi \\ (\gamma = \theta, R, G, q) \end{aligned}$$
(1.3)

где є – малый параметр, $\mathbf{z} = (R, G, q)$ – вектор медленно меняющихся функций, q – скоростной напор (динамическое давление набегающего потока), $D_i^{\nu}(\theta, z)$ – известные функции.

2. Невозмущенное движение. При $\varepsilon = 0$ система (1.3) приобретает вид:

$$\ddot{\theta} + F(\theta, z) = 0$$

$$\dot{\phi} = R/\bar{I}_x - (G - R\cos\theta)\cos\theta/\sin^2\theta$$

$$\dot{\psi} = (G - R\cos\theta)/\sin^2\theta$$

$$F(\theta, z) = (R - G\cos\theta)(G - R\cos\theta)/\sin^3\theta - (a\sin\theta + b\sin2\theta)$$
(2.2)

Очевидно, что уравнение для пространственного угла атаки интегрируется независимо от двух других уравнений системы (2.1) и при известном общем решении этого уравнения два остальных уравнения интегрируются в квадратурах.

Первому уравнению системы (2.1) соответствует интеграл энергии:

$$\dot{\theta}^2/2 + W(\theta, z) = E$$

$$W(\theta, z) = \int F(\theta, z) d\theta = (G^2 + R^2 - 2GR\cos\theta)/(2\sin^2\theta) + a\cos\theta + b\cos^2\theta$$
(2.3)
(2.4)

Рассмотрим случай, когда восстанавливающий момент (1.1) зависит только от синуса угла нутации (
$$b = 0$$
) и тело обладает статической устойчивостью ($a < 0$). Общее решение для угла нутации известно [3]. Воспользуемся им и запишем в виде [4, 5]:

$$\cos\theta = (u_2 - u_1) \operatorname{cn}^2 [\beta t + K(k), k] + u_1$$

$$\beta = \sqrt{-a(u_2 - u_3)/2}, \quad k = \sqrt{(u_2 - u_1)/(u_2 - u_3)}$$
(2.5)

где сп – эллиптический косинус Якоби; K(k) – полный эллиптический интеграл I рода; u_1, u_2, u_3 – корни кубического уравнения относительно $u = \cos\theta$, получаемого из интеграла энергии (2.3).

С помощью (2.5) решения для углов собственного вращения и прецессии может быть найдено путем взятия квадратур [6]:

$$\varphi - \varphi_0 = (1/\bar{I}_x - 1)Rt + [(R+G)I_+ + (R-G)I_-]/2$$
(2.6)

$$\Psi - \Psi_0 = (1/\bar{I}_x - 1)Rt + [(R+G)I_+ - (R-G)I_-]/2$$
(2.7)

$$I_{-} = [\beta(u_{1} - u_{2})]^{-1} n_{1} [\Pi(\xi, n_{1}, k) - \Pi(n_{1}, k)], I_{+} = [\beta(u_{1} - u_{2})]^{-1} n_{2} [\Pi(\xi, n_{2}, k) - \Pi(n_{2}, k)]$$

$$n_1 = (u_1 - u_2)/(1 - u_1), \quad n_2 = -(u_1 - u_2)/(1 + u_1), \quad \xi = \operatorname{am}(\beta t + K, k)$$

где $\Pi(\xi, n, k)$, $\Pi(n, k)$ – неполный и полный нормальные эллиптические интегралы третьего рода.

Если форма тела соответствует бигармоническому моменту (1.1), поиск аналогичных решений (2.5)–(2.7) усложняется. Вид решения зависит от знаков коэффициентов a, b и расположения соответствующих корней u_1, u_2, u_3, u_4 . Решение для угла нутации для одного варианта знаков и расположения корней впервые было приведено в [7], а для всех возможных сочетаний было дано в [8] в виде

$$\cos\theta = L + M/[1 + Ncn^{m}(\beta t + \tau_{0}, k)]$$
(2.8)

Подробное описание значений коэффициентов, входящих в эту формулу, можно найти в [8]. Решения для углов собственного вращения и прецессии получены в работе [9]. 3. Возмущенное движение осесимметричного тела. Пусть малая асимметрия отсутствуют ($\Delta \xi = 0$), а на тело действуют восстанавливающий момент (1.1) и малый диссипативный момент. Возмущенная система (1.3) примет вид

$$\ddot{\theta} + F(\theta, z) = \varepsilon \Phi_{\theta}(\theta, z), \quad \dot{z} = \varepsilon \Phi_{z}(\theta, z)$$
(3.1)

Будем считать, что коэффициенты двучлена (1.1) известные функции скоростного напора, а проекции диссипативного (демпфирующего) момента пропорциональны соответствующим проекциям одноименных угловых скоростей:

$$m_x = \lambda \kappa \omega_x, \quad m_y = \kappa \omega_y, \quad m_z = \kappa \omega_z \tag{3.2}$$

где к – малый коэффициент, определяющий интенсивность диссипации энергии.

В возмущенной системе (1.3) быстрые и медленные переменные разделены, однако она не отвечает стандартной форме вращательной системы. Заменим уравнение для угла нутации θ, выбрав в качестве амплитуды интеграл энергии [10], предварительно записав его в виде:

$$\mathbf{E} = (\bar{I}_x \omega_x^2 + \omega_y^2 + \omega_z^2)/2 - \int M_{\theta}(\theta, q) d\theta$$
(3.3)

Дифференцируя (3.3) по времени в силу действующих возмущений, получим систему, описывающую нутационное движение:

$$\dot{z} = \varepsilon \Phi_z(\theta, z) \quad (z = E, R, G, q) \tag{3.4}$$

Применив к системе (3.4) оператор усреднения вдоль порождающего решения (2.8), можно получить усредненную систему первого приближения следующего вида [8]:

$$\dot{z} = \varepsilon \langle \Phi_z(\theta, z) \rangle = Z(\langle \cos \theta \rangle, \langle \cos^2 \theta \rangle, z)$$
(3.5)

где $\langle ... \rangle$ – оператор усреднения по мгновенному периоду колебаний угла нутации. Средние значения $\langle \cos \theta \rangle$, $\langle \cos^2 \theta \rangle$ с помощью решения (2.8) вычисляются через полные эллиптические интегралы первого, второго и третьего рода.

Потенциальной энергии (2.4) отвечает фазовый портрет, который может содержать, например, две особые точки типа центр и одну – типа седло. В этом случае сепаратриса разбивает фазовую плоскость на три области: внешнюю и две внутренних. Под действием возмущений в процессе эволюции системы фазовая траектория, начавшись в одной из трех областей, может продолжаться в другой, пересекая при этом сепаратрису. Это характеризуется качественным изменением характера движения, в частности разрывом огибающей угла нутации.

4. Канонические переменные действие–угол. Весьма полезные результаты можно получить, изучая невозмущенное движения, если воспользоваться переменными действие-угол. Выбирая в качестве канонических переменных углы Эйлера и соответствующие им обобщенные импульсы (p_w , p_θ , p_ϕ), запишем гамильтониан в виде [11]:

$$H = \frac{p_{\varphi}^2 + p_{\psi}^2 - 2p_{\varphi}p_{\psi}\cos\theta}{2A\sin^2\theta} + \frac{p_{\varphi}^2}{2C} - \frac{p_{\varphi}^2}{2A} + \frac{p_{\theta}^2}{2A} + A(a\cos\theta + b\cos^2\theta) = h$$

$$p_{\varphi} = AR, \quad p_{\psi} = AG$$
(4.1)

где A = I, $C = I_x - экваториальный и продольный моменты инерции тела. Введем в рассмотрение переменные действия [12]:$

$$I_1 = \frac{1}{2\pi} \oint p_{\psi} d\psi = p_{\psi}, \quad I_2 = \frac{1}{2\pi} \oint p_{\theta} d\theta, \quad I_3 = \frac{1}{2\pi} \oint p_{\phi} d\phi = p_{\phi}$$
(4.2)

31

Нумерация действий выбрана согласно последовательности эйлеровых поворотов. Переменные ϕ , ψ являются циклическими и соответствующие им импульсы и переменные действия являются первыми интегралами. Канонические уравнения для переменных действие-угол запишутся в виде [12]:

$$\frac{dI_i}{dt} = -\frac{\partial H}{\partial w_i} = 0, \quad \frac{dw_i}{dt} = \frac{\partial H}{\partial I_i} = \omega_i \quad (i = 1, 2, 3)$$
(4.3)

Очевидно, что $I_i = \text{const}_i$, а частоты $\omega_i = \omega_i(I_i)$ являются постоянными величинами и углы определяются простыми формулами: $w_t = \omega_i t + w_{i0}$. Импульс p_{θ} определим из интеграла энергии (4.1), при этом сделаем замену переменных $u = \cos\theta$, тогда действие I_2 примет вид:

$$I_2 = -\frac{1}{\pi} \int_{u_1}^{u_2} (1 - u^2)^{-1} \sqrt{f(u)} du$$
(4.4)

$$f(u) = \dot{u}^{2} = 2A^{2}bu^{4} + 2A^{2}au^{3} - 2A^{2}b + 2Ah + \left(1 - \frac{A}{C}\right)I_{3}^{2}u^{2} - 2(A^{2}a - I_{1}I_{3})u + \left(2Ah - I_{1}^{2} - \frac{A}{C}I_{3}^{2}\right)$$

$$u_{1} = \cos\theta_{\min}, \quad u_{2} = \cos\theta_{\max}$$
(4.5)

Интеграл (4.4) относится к классу эллиптических интегралов и, следовательно, приводится к сумме элементарных функций и трех нормальных эллиптических интегралов. Результат интегрирования зависит от типа корней полинома четвертой степени f(u) и может быть получен с помощью решения (2.8). Приведем решения для случая, когда полином (4.5) имеет все действительные корни

$$\begin{split} I_{2} &= \frac{\eta}{\pi} \bigg\{ \bigg[h + \frac{(A^{-1} - C^{-1})I_{3}^{2}}{2} \bigg] K(k) - Aa[\lambda K(k) + \nu \Pi(n, k)] - \\ &- Ab \bigg[\bigg[\lambda^{2} - \frac{\nu^{2}}{2(1+n)} K(k) + \bigg(\frac{\nu^{2}n}{2(1+n)(k^{2}+n)} \bigg] E(k) + \\ &+ \bigg\{ \frac{\nu^{2}}{2} \bigg(\frac{n+2k^{2}}{k^{2}+n} + \frac{1}{1+n} \bigg) + 2\lambda \nu \bigg] \Pi(n, k) \bigg] \bigg\} - \frac{\eta}{2A\pi} \sum_{i=1}^{2} d_{i} [\lambda_{i} K(k) + (\nu_{i} - \lambda_{i}) \Pi(n_{i}, k)] \\ &k = [(u_{3} - u_{4})(u_{2} - u_{1})(u_{3} - u_{1})^{-1}(u_{2} - u_{4})^{-1}]^{1/2}, \quad n = (u_{2} - u_{1})/(u_{1} - u_{3}), \quad \nu = (u_{2} - u_{3}) \\ &\lambda = u_{3}, \quad \eta = 4 [-2b(u_{1} - u_{3})(u_{2} - u_{4})]^{-1/2}, \quad \lambda_{1,2} = (1 \mp u_{3})^{-1}, \quad \nu_{1,2} = (1 \mp u_{2})^{-1} \\ &d_{1,2} = (I_{3} \mp I_{1})^{2}/2, \quad n_{1,2} = (u_{2} - u_{1})(1 \mp u_{3})(u_{1} - u_{3})^{-1}(1 \mp u_{2})^{-1} \end{split}$$

где K(k), E(k), $\Pi(n, k)$ – полные эллиптические интегралы I, II и III рода. Чтобы представить гамильтониан (4.1) в переменных действия $H = H(I_1, I_2, I_3)$, необходимо выразить постоянную h через переменные действия. Действия I_1 и I_3 есть постоянные числа (см. (4.2)), а действие I_2 является функцией постоянной h и для однозначного разрешения его относительно постоянной h требуется, чтобы $\partial I_2/\partial h \neq 0$. В работе [11] показа-

но, что эта производная строго положительна и уравнение (4.6) относительно h однозначно разрешимо. Для случая действительных корней полинома (4.5) частоты углов w_1 , w_2 , w_3 определяются следующими формулами:

$$\omega_{1} = \frac{1}{AK(k)} \sum_{i=1}^{2} d_{i+2} [\lambda_{i}K(k) + (\nu_{i} - \lambda_{i})\Pi(n_{i}, K)], \quad \omega_{2} = \beta \frac{\pi}{K(k)}$$
$$\omega_{3} = \frac{I_{3}}{C} - \frac{I_{3}}{A} + \frac{1}{AK(k)} \sum_{i=1}^{2} (-1)^{i} d_{i+2} [\lambda_{i}K(k) + (\nu_{i} - \lambda_{i})\Pi(n_{i}, k)]$$
$$d_{3,4} = (I_{1} \mp I_{3})/2, \quad \beta = \sqrt{-b(u_{1} - u_{3})(u_{2} - u_{4})/2}$$

Аналогичные решения могут быть получены и для случая, когда полином (4.5) имеет два действительных и два комплексных корня [11].

5. Возмущенное движение тела с асимметрией. Резонансы. Возмущенное движение будем рассматривать для асимметричных тел с синусоидальной зависимостью восстанавливающего момента от угла нутации (b = 0 в (1.1)). Опустим в возмущенной системе (1.3) уравнение для угла прецессии ψ , поскольку правые части уравнений системы не зависят от ψ . В возмущенной системе (1.3) быстрые и медленные переменные разделены, однако она не отвечает стандартной форме вращательной системы. С помощью процедуры, предложенной в [10], заменим уравнение второго порядка для угла нутации θ двумя уравнениями первого порядка для амплитуды $x = u_1 = \cos\theta_{max}$ и фазы у. Далее переменную ϕ представим в виде суммы вековой и периодической составляющей: $\phi = \bar{\phi} + \bar{\phi}$. В результате получим двухчастотную систему стандартного вида [4]:

$$\dot{y} = \omega(z) + \varepsilon Y(y, \bar{\varphi} + \tilde{\varphi}(y, z), z), \quad \dot{\bar{\varphi}} = \lambda(z)$$

$$\dot{z} = \varepsilon \Phi_z(y, \bar{\varphi} + \tilde{\varphi}(y, z), z), \quad z = (x, R, G, q)$$

$$\lambda(z) = \frac{1}{2\pi} \int_{0}^{2\pi} \Phi_{\varphi}(y, z) dy$$
(5.1)

где $\lambda(z)$ – средняя частота собственного вращения.

Для построения системы (5.1) и нахождения периодической составляющей $\tilde{\varphi}(y, z)$ использовалось решение (2.5), записанное в виде: $\cos\theta = A(x) \operatorname{cn}^2[yK/\pi + K, k] + x$ и решение для угла собственного вращения (2.6). Частоты быстрых переменных имеют вид

$$\omega = \pi \beta / (2K), \ \lambda = (1/\bar{I}_x - 1)R + [(R + G)n_1\Pi(n_1, k) + (R - G)n_2\Pi(n_2, k)] / (2AK)(5.2)$$

Резонанс в стандартной двухчастотной системе (5.1) возможен, когда целочисленная комбинация частоты колебания угла нутации и средней частоты собственного вращения близка к нулю

$$m\omega(z) - n\lambda(z) = O(\varepsilon)$$
(5.3)

где *m*, *n* – целые взаимно простые числа.

Для анализа движения в окрестности резонанса (5.3) удобно использовать систему маятникового типа [4], которая получается из (5.1) после замены $\chi = my/n - \bar{\varphi}$ и усреднения по быстрой переменной у:

$$d^{2}\chi/d\tau^{2} + Q(\chi, z) = 0, \quad dz/d\tau = \mu f_{z}(\chi, z)$$
(5.4)

(5.5)

$$Q(\chi, z) = -\left(\frac{m}{n}\frac{\partial\omega}{\partial z} - \frac{\partial\lambda}{\partial z}\right)f_z(\chi, z) = Q_0(z) + Q_1(z)\sin\chi + Q_2(z) + Q_2(z)\sin\chi + Q_2(z)\cos\chi +$$

+ $Q_2(z)\cos\chi + Q_3(z)\sin 2\chi + Q_4(z)\cos 2\chi$

$$\mu = \sqrt{\varepsilon}, \quad f_z(\chi, z) = \left\langle \Phi_z \left(y, \frac{m}{n} y - \chi + \tilde{\varphi}(y, z), z \right) \right\rangle$$

где $\tau = \mu t$ – "медленное" время, $f_z(\chi, z)$ – средние по у.

Характер невозмущенного движения ($\mu = 0$) системы (5.4) зависит от вида функции (5.5), которая в свою очередь определяется соотношением (1.4) в исходной системе (1.3). Фазовый портрет системы (5.4) состоит из нескольких областей колебательного и вращательного движений, разделенных сепаратрисой. В силу малых возмущений, действующих на систему, может происходить переход из одной области в другую, а также эволюция самих областей.

При отсутствии возмущений ($\mu = 0$) система (5.4) имеет вид:

$$d^{2}\chi/d\tau^{2} + Q(\chi, z) = 0$$
(5.6)

и допускает первый интеграл – интеграл энергии

$$(d\chi/d\tau)^{2}/2 + W(\chi, z) = E$$
(5.7)

$$W(\chi, z) = \int Q(\chi, z) d\chi$$
(5.8)

Стационарные точки системы (5.6) являются корнями уравнения

$$Q(\chi^*, z) = 0 \tag{5.9}$$

Действительные корни этого выражения существуют, если выполняется условие:

$$\max_{\chi} Q \min_{\chi} Q \le 0 \tag{5.10}$$

В силу (5.5) может существовать четыре корня $\chi = \chi_i^*$ (*i* = 1, ..., 4), удовлетворяющих уравнению (5.9). Устойчивое положение равновесия определяется условием $(\partial Q/\partial \chi)_{\chi = \chi_i^*} > 0$. Когда все коэффициенты $Q_i(z)$ в формуле (5.5) отличны от нуля, потенциальная энергия (5.8) может иметь вид, показанный на фиг. 3. Внешняя сепаратриса отделяет область вращательных движений G_4 от "большой" колебательной области G_3 , которая охватывает две внутренние "малые" области колебательных движений G_1 и G_2 . Точки χ_1^* и χ_3^* – точки типа центр, χ_2^* и χ_4^* – точки типа седло. Если поперечные моменты инерции равны ($I_y = I_z$), то два последних слагаемых в выражении (1.4), а следовательно и в формуле (5.5) обращаются в ноль ($Q_3 = Q_4 = 0$). В этом случае одна из областей колебательного движения (G_1 или G_2), а также стационарная седловая точка χ_2^* вырождаются.

При действия на систему (5.4) возмущений ($\mu \neq 0$) траектории на фазовом портрете изменяются, а также происходит деформация сепаратрис. Возможны три характерных типа движения: прохождение через резонанс (1), которому отвечает изменение направления вращения маятниковой системы; захват в резонанс (2), когда возможен колебательный режим движения маятника и траектории находятся внутри сепаратрисы; движение в малой окрестности стационарной точки типа центр внутри (3) сепара

Фиг. 4

трисы (фиг. 4). Рассмотренным типам движения, внутри колебательной области, можно поставить в соответствие два вида устойчивости: устойчивость маятника в колебательной области (устойчивость резонанса) и устойчивость в малой окрестности стационарной точки типа центр (устойчивость по Ляпунову).

Понятие устойчивости резонанса используется в практических задачах, связанных со спуском космических аппаратов в атмосферу [13]. Основу анализа устойчивости движения фазовой точки в колебательной области, когда при любых малых возмущениях фазовая точка всегда остается внутри этой области, составляет весьма простое положение: величина полной энергии системы Е, на любом интервале вре-

35

2*

мени, не должна превышать значения потенциальной энергии W_C , вычисленной в седловой точке. Для реализации устойчивого резонанса необходимо, чтобы на фазовой плоскости существовала колебательная область, и достаточно, чтобы производная по времени полной энергии системы dE/dt была меньше, чем производная по времени потенциальной энергии dW_C/dt , вычисленной в седловой точке. В этом случае колебательная область будет расширяться быстрее, чем фазовая траектория приближаться к границе области к сепаратрисе. Производная dE/dt показывает эволюцию фазовой траектории маятниковой системы (5.4), а производная dW_C/dt – эволюцию сепаратрисы под действием малых возмущений. Поскольку речь идет о колебательном движении системы, то об указанных производных можно говорить только в смысле их средних на периоде колебаний значений. Достаточное условие устойчивости резонанса имеет вид [13]:

$$\langle dW_{\rm C}/dt \rangle - \langle dE/dt \rangle > 0$$

(5 1 1)

$$\langle dW_C/dt \rangle = \oint_l (\partial W_C/\partial z) f_z(\chi, z) d\tau, \quad \langle dE/dt \rangle = \oint_l (\partial E/\partial z) f_z(\chi, z) d\tau$$
(3.11)

Рассмотрим устойчивость в малой окрестности стационарной точки типа центр [14]. Преобразуем систему (5.4) к виду, удобному для проведения исследования устойчивости по Ляпунову, для этого сделаем замену переменных в окрестности устойчивой стационарной точки: $\chi = \chi^* + \Delta \chi$, $\rho = \rho_0 + \Delta \rho$ ($\rho = \dot{\chi}$, $\rho_0 = 0$) и разложим функцию $Q(\chi, z)$ в точке $\chi = \chi^*$ в ряд Тейлора. В результате получим:

$$d\Delta\chi/d\tau = \Delta\rho + \mu G, \quad d\Delta\rho/d\tau = -\Omega^2 \Delta\chi + \mu P, \quad dz/d\tau = \mu f_z$$

$$\Omega^2 = \left. \frac{\partial Q}{\partial \chi} \right|_{\chi = \chi^*} > 0, \quad G = \left(\frac{\partial Q}{\partial z} / \frac{\partial Q}{\partial \chi} \right)_{\chi = \chi^*} f_z(\chi^*, z)$$
(5.12)

где P – функция, определяющая нелинейные члены разложения по переменной $\Delta \chi$.

Для построения функции Ляпунова в квазилинейной системе (5.12) удобно перейти к переменным амплитуда-фаза: $\Delta \chi = A \cos \psi$, $\Delta \rho = -A \Omega \sin \psi$. После чего система (5.12) примет вид

$$\frac{d\Psi}{d\tau} = \Omega - \frac{\Omega'}{\Omega} \sin \psi \cos \psi + \mu \left(-\frac{P}{A\Omega} \cos \psi - \frac{G}{A} \sin \psi \right)$$

$$\frac{dA}{d\tau} = -A \frac{\Omega'}{\Omega} \sin^2 \psi + \mu \left(-\frac{P}{\Omega} \sin \psi + G \cos \psi \right), \quad \frac{dz}{d\tau} = \mu f_z$$
(5.13)

где $\Omega' = d\Omega/d\tau$ – имеет порядок малости μ .

В качестве функции Ляпунова выбирается квадратичная форма амплитуды колебаний: $V = A^2 = (\Delta \chi)^2 + (\Delta \rho)^2 / \Omega^2$. Эта функция является положительно-определенной и допускает по переменным $\Delta \chi$ и $\Delta \rho$ бесконечно-малый высший предел и удовлетворяет всем требованиям теоремы 3.1 из [15], согласно которой для устойчивости движения системы (5.11) в окрестности точки $\Delta \chi = 0$, $\Delta \rho = 0$ при действии возмущений достаточно потребовать выполнения следующего условия

$$A\langle dA/d\tau \rangle < 0 \tag{5.14}$$

Разложение функций *P* и *G* в ряд Тейлора в окрестности точки $\Delta \chi = 0$ и усреднение второго уравнения системы (5.11) по переменной ψ позволяет переписать достаточное условие устойчивости (5.14) с точностью до членов порядка малости μ^2 в виде $\Omega'/\Omega > 0$.

Выполняя соответствующие вычисления, можно записать окончательную форму достаточного условия устойчивости движения в окрестности стационарной точки в виде [14]:

$$\left(\frac{\partial^2 Q}{\partial \chi \partial z} - \frac{\partial^2 Q}{\partial \chi^2} \frac{\partial Q}{\partial Q} \right)_{\chi = \chi^*} f_z(\chi^*, z) > 0$$
(5.15)

Следует отметить, что необходимые (5.10) и достаточные (5.11) условия устойчивости резонанса, а также достаточные условия устойчивости движения в окрестности стационарной точки (5.15) получены для общего нелинейного случая движения тела в сопротивляющейся среде и для любого типа резонанса (5.3). В [14] и [16] показано, что из условий (5.10) и (5.15) вытекают аналогичные условия, полученные другими авторами для более простых квазилинейных математических моделей движения тела.

6. Пример. На фиг. 5 показано изменение частот колебаний $\omega(z)$ и $\lambda(z)$ от времени *t*, для тела со следующими характеристиками: m = 200 кг, $I_x/I = 0.4$, $\bar{z}_C = 0.002$. При начальных условиях: $\theta_0 = 47^\circ$, $\phi_0 = 0^\circ$, $R_0 = 4.18$ с⁻¹, $G_0 = 2.96$ с⁻¹.

В окрестности точек t_1, t_2 (резонанс m = n = 1) и t_3 (резонанс m = 0, n = 1) тело захватывается в резонанс. Фазовые траектории, а также начальное и конечное положения сепаратрисы для всех трех резонансов показаны соответственно на фиг. 6, a, b, c. На этой фигуре тонкой сплошной линией изображена фазовая траектория. Толстой штриховой линией показано положение сепаратрисы в начальный момент времени, соответствующий захвату в резонанс. Толстой сплошной линией изображено конечное положение сепаратрисы. В моменты времени $t_1, t_2, u t_3$ вычислялось достаточное условие устойчивости резонанса (5.11) и достаточное условие устойчивости по Ляпунову (5.15). В точке t_1 достаточное условие устойчивости (5.15) является истинным, однако не выполняется соотношение (5.11). Это означает, что с течением времени колебательная область сжимается, и фазовая траектория "выталкивается" во вращательную область (фиг. 6, *a*). В момент времени t₂ достаточное условие (5.15) не выполняется, а неравенство (5.11) является истинным. Как видно из фиг. 6, b, с течением времени фазовая траектория покидает малую окрестность стационарной точки типа центр, но остается внутри сепаратрисы в пределах области колебательного движения. В точке t_3 одновременно выполняется и неравенство (5.11) и достаточное условие (5.15), хотя меняется тип резонанса (m = 0, n = 1). Это означает, что колеба-

тельная область расширяется, а фазовая траектория попадает в малую окрестность стационарной точки типа центр.

Численные расчеты показывают, что при анализе нелинейных резонансов следует проводить исследование устойчивости как самого резонанса, так и устойчивости по Ляпунову в окрестности стационарной точки, поскольку из устойчивости резонанса не следует устойчивости по Ляпунову и наоборот.

Важно отметить, что исследование возмущенного движения твердого тела под действием восстанавливающего момента остается весьма актуальной темой, что, например, отражается новыми публикациями [17].

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 03-01-00151).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ярошевский В.А. Движение неуправляемого тела в атмосфере. М.: Машиностроение, 1978. 167 с.
- 2. Аэродинамика ракет / Под ред. Краснова Н.Ф. М.: Высшая шк., 1968. 772 с.
- 3. Суслов Г.К. Теоретическая механика. М.; Л.: Гостехиздат, 1944. 655 с.
- 4. Асланов В.С. Нелинейные резонансы при неуправляемом спуске в атмосфере асимметричных КА // Космич. исследования. 1992. Т. 30. № 5. С. 608-614.
- 5. Асланов В.С. О вращательном движении баллистического осесимметричного аппарата при спуске в атмосфере // Космич. исследования. 1976. Т. 14. № 4. С. 491–497.

- 6. Асланов В.С. Определение амплитуды пространственных колебаний баллистического аппарата с малой асимметрией при спуске в атмосфере // Космич. исследования. 1980. Т. 18. № 2. С. 178–184.
- 7. Асланов В.С., Бойко В.В. Нелинейное резонансное движение асимметричного космического аппарата в атмосфере // Космич. исследования. 1985. Т. 23. № 3. С. 408–415.
- 8. Асланов В.С., Серов В.М. Вращательное движение осесимметричного твердого тела с бигармонической характеристикой восстанавливающего момента // Изв. РАН. МТТ. 1995. № 3. С. 19–25.
- 9. Серов В.М. Вращательное движение динамически симметричного твердого тела под действием нелинейного момента // Изв. АН СССР. МТТ. 1991. № 5. С. 26–31.
- 10. Волосов В.М. Некоторые виды расчетов в теории нелинейных колебаний, связанных с усреднением // Ж. вычисл. математики и мат. физики. 1963. Т. 3. № 1. С. 3–53.
- 11. Асланов В.С., Тимбай И.А. Движение твердого тела в обобщенном случае Лагранжа. Самара: Изд-во СГАУ, 2001. 58 с.
- 12. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 1. Механика. М.: Наука, 1988. 215 с.
- 13. Асланов В.С., Мясников С.В. Устойчивость нелинейных резонансных режимов движения космического аппарата в атмосфере // Космич. исследования. 1996. Т. 34. № 6. С. 626–632.
- 14. Асланов В.С., Мясников С.В. Анализ нелинейных резонансов при спуске космического аппарата в атмосферу // Космич. исследования. 1997. Т. 35. № 6. С. 659–665.
- 15. Xanaeв М.М. Асимптотические методы и устойчивость в теории нелинейных колебаний. М.: Высш. шк., 1988. 184 с.
- 16. Асланов В.С. Два вида нелинейного резонансного движения асимметричного КА в атмосфере // Космич. исследования. 1988. Т. 26. № 2. С. 220–226.
- 17. Акуленко Л.Д., Козаченко Т.А., Лещенко Д.Д. Возмущенные вращательные движения твердого тела под действием нестационарного восстанавливающего момента, зависящего от угла нутации // Механика твердого тела. Донецк: Институт прикл. мат. и мех. НАН Украины, 2001. Вып. 31. С. 57–62.

Самара

Поступила в редакцию 8.04.2003