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The  plane  motion  of  an  axisymmetric  satellite  with  a small  movable  mass  on its  axis  of  symmetry  is exam-
ined,  and  the  equation  of  the  motion  of  this  system  in  an  elliptical  orbit  is  derived.  Problems  regarding
the  gravitational  stabilization  of  two  diametrically  opposite  relative  equilibrium  positions  of  the  satel-
lite in  a circular  orbit  to in-plane  perturbations  are  investigated.  A continuous  law  for  controlling  the
movable  mass,  which  ensures  stabilization  of  the  axis  of  symmetry  of the  satellite  to  the  local  vertical
and  reorientation  of the  satellite  by moving  it from  one  stable  equilibrium  position  to  the  other,  is  con-
structed  using  the  swing-by  technique.  A  solution  is  obtained  by  using  the  second  method  of  classical
stability  theory  and  constructing  the  corresponding  Lyapunov  functions.  The  asymptotic  convergence  of
the  solutions  with  the  control  obtained  is  confirmed  by  the  results  of  numerical  simulation  of  the motion
of  the  system.

© 2012 Elsevier Ltd. All rights reserved.

The problem of the stability of the relative equilibria and different motions of a satellite about the centre of mass in a Keplerian orbit
nder the action of gravitational, aerodynamic, and other torques has been the subject of publications by numerous investigators.1–10 The
lane motion of an axisymmetric satellite with a point mass (load) that can move along the axis of symmetry is studied below. The centre
f mass of the satellite moves in an orbit under the action of forces of central Newtonian attraction. A law for controlling the satellite is
btained by continuous variation of the distance from the centre of mass of the carrier body to the movable load, according to the principle
f swing action.

Swings are usually modelled by a single-mass11 or two-mass12,13 pendulum of variable length, and their models can be used to solve
pplied problems. For example, the swing-by technique has been used14 to calculate the orbital manoeuvring of a satellite. The problems
f gravitational stabilization with respect to in-plane perturbations of the relative equilibrium position of the satellite in a circular orbit
nd its reorientation are investigated below.

In Section 1 the equation of the plane motion of a satellite with a movable mass about a common centre of mass in a Keplerian orbit of
rbitrary eccentricity under the action of a gravitational torque is obtained under the condition that the mass of the load is considerably
ess than the mass of the carrier. As a consequence the equation of motion of a satellite in a circular orbit is used. In Section 2 a control
aw is proposed, and the problem of gravitational stabilization (damping of the in-plane oscillations) in the vicinity of a position of relative
quilibrium of the satellite, when its axis of dynamic symmetry coincides with the local vertical, is solved. The solution is obtained
nalytically by constructing the corresponding Lyapunov function. In Section 3 controlling the “swinging” of the satellite in the vicinity
f its stable equilibrium position and moving it into a diametrically opposite, asymptotically stable position (turning the satellite through
n angle �) are examined. The corresponding Lyapunov function, which reveals the instability of the satellite in the vicinity of the initial
quilibrium position and its asymptotic stability in the vicinity of the new equilibrium position, is constructed.

. The equation of motion of a satellite with a movable mass

Consider the motion of a satellite about its centre of mass in a central Newtonian gravitational field with its centre at the point O.
ssuming that the satellite dimensions are small compared with the orbit dimensions, we make the usual assumptions3 that the motion

f the centre of mass of the satellite does not depend on its motion about the centre of mass. The satellite is an axisymmetric rigid body
carrier) of mass m1, along whose axis of symmetry a point load of mass m2 can move (Fig. 1). The centre of mass of the carrier lies on its
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Fig. 1.

ynamic axis of symmetry at the point O1. We  use l and d to denote the distances from the point O1 to the load and to the centre of mass
f the entire satellite O2, respectively. The following relation holds for them

(1.1)

The orbital system of coordinates O2XYZ was chosen so that the O2X axis is directed along a tangent to the orbit, the O2Y axis is
erpendicular to the orbital plane, and the O2Z axis completes the system of coordinates as a set of three axes at right angles. The axes of
he system of coordinates O1xyz,  which is connected to the satellite, coincide with its principal central axes of inertia. The orientation of
he connected system of coordinates relative to the orbital system of coordinates is specified using the Euler angles �, � and �. Suppose A,

 and C, where B < A = C, are the principal central moments of inertia of the satellite.
We derive the equation of plane motion of a satellite with a movable mass about the common centre of mass under the condition that

he mass of the load m2 is considerably less than the mass of the carrier body m1:

(1.2)

aking into account assumption (1.2), from relation (1.1) we have

(1.3)

The moments of inertia A2, B2 and C2 of a satellite with a movable load about the axes passing through the common centre of mass O2
nd parallel, respectively, to the axes of the system of coordinates O1xyz,  rigidly connected to the carrier body, are specified, by virtue of
elation (1.3), by the equalities

(1.4)
nly terms which are of the first-order in the small parameter � have been left in the first relation.
It is well known3 that the plane motions of a satellite
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bout the centre of mass in an elliptical orbit occur under the action of the gravitational torque

ere p, q and r are the components of the angular velocity of rotation of the satellite, the dot denotes a derivative with respect to time t,
z is the gravitational torque about the axis passing through the point O2 and perpendicular to the orbital plane, n = const > 0 is the mean
otion of the centre of mass of the satellite, e is the orbit eccentricity, and � is the true anomaly. Taking equality (1.4) into account, we
rite the angular momentum in the form

hen by the theorem of the change in angular momentum,15 the equation of plane motions of a satellite with a movable mass is written
n the following form

(1.5)

Treating the true anomaly as a new variable,3 according to the equality

(1.6)

e write the first and second derivatives with respect to time for � in the form

(1.7)

he prime denotes a derivative with respect to �. In addition, the following equalities hold

(1.8)

Finally, when relations (1.6)-(1.8) are taken into account, the equation of plane motions of a satellite with a movable mass in a Keplerian
rbit under the action of a gravitational torque is written in the form

(1.9)

For motion in a circular orbit e = 0, and k2 = 1.

. Choice of the control and equation of controlled motions of a satellite

We will use the principle of action of a swing (a plane pendulum of variable length) to solve the problem of gravitational stability with
espect to in-plane perturbations of the relative equilibrium position

(2.1)

f a satellite in a circular orbit. We  will treat the distance from the centre of mass of the carrier body O1 to the movable mass m2, which is a
ontinuous function of the phase state vector, as a control. By analogy with swings, we can define a law for controlling the movable mass,
hich will promote a decrease or an increase in the amplitude of the oscillation of the satellite in the vicinity of the relative equilibrium
osition under the action of the gravitational torque, depending on the values of the coefficients. The continuity of the control law selected
nables us to construct Lyapunov functions based on classical stability theory for analytically investigating the asymptotic stability and
nstability of plane motions of the satellite.

We  will state and solve the problem of the asymptotic damping of in-place oscillations of a satellite about relative equilibrium position
2.1). We  will obtain the solution by the second method of stability theory.

We define the control in the form

(2.2)

Suppose a > 0 initially. Taking into account the relation

e rewrite Eq. (1.9) for e = 0 and k2 = 1 in the form

(2.3)

ere

Equation (2.3) clearly has zero solution (2.1), which corresponds to the relative equilibrium position of the satellite investigated;

herefore, it is the equation of perturbed motion in the vicinity of this equilibrium position.

We introduce the notation
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We  choose the Lyapunov function

(2.4)

We will determine the coefficient k = const > 0 later. Terms of the third-order and higher in �̇ and �′ were discarded in formula (2.4). As
ollows from expression (2.4), when the condition

(2.5)

olds, the function V(�, �′) in the vicinity of relative equilibrium position (2.1) can be represented by a series that begins with a positive-
efinite quadratic form. Since the functions are sign-definite,16 function (2.4) is positive-definite. We  will calculate the total derivative of
he function V = V(�, �′) with respect to time. Since �̇ = n in a circular orbit, according to formula (1.6), by virtue of Eq. (2.3) the derivative
f the Lyapunov function has the form

Expanding the right-hand side of this expression in series in the variables � and �′ and discarding terms of higher than the fourth order,
e obtain

(2.6)

n order for the penultimate third-order term on the right-hand side of equality (2.6) to be identically equal to zero, we  choose the coefficient
 in the form

(2.7)

hen derivative (2.6) will be a homogeneous fourth-order form in the variables � and �′.
By Sylvester’s criterion,16 when the inequality

olds, which occurs by virtue of the smallness of m,  homogeneous form (2.6) will be negative-definite; it corresponds to positive-definite
unction (2.4). By Lyapunov’s asymptotic stability theorem,16 relative equilibrium position (2.1) of the satellite in a circular orbit is asymp-
otically stable. Function (2.4) increases as |�| increases for all � ∈ [−�/2, �/2]. Therefore,17 when condition (2.5) is satisfied, control (2.2)
ill damp the in-plane oscillations of the satellite that begin not only in a small vicinity of equilibrium position (2.1), but also for any initial
eviations �(t0) ∈ [−�/2, �/2].

The instability of the equilibrium position

(2.8)

f Eq. (2.3), by virtue of which the region of attraction of the zero solution increases to �(t0) ∈ (−�, �] and values of �′(t0) that satisfy
nequality (2.5), will be demonstrated below. For, values of the speed �′(t0) as large as desired, by virtue of the energy analysis performed
n Ref. 11 for a similar (multi-step) law for controlling the movable mass, we have a decrease in the total energy in a geometric progression,

hich leads to a decrease in �′(t), particularly down to values that satisfy inequality (2.5). Thus, trivial solution (2.1) is asymptotically
table for any initial deflection. The results of integrating the equations of motion confirm the conclusions drawn.

The upper part of Fig. 2 shows the phase portrait of Eq. (2.3) with control (2.2), which was  obtained by numerically integrating the
quation of motion for a = 5 m and the following numerical values of the parameters of the system:

m = 1 kg, A = 100 kg · m2, B = 10 kg · m2, l0 = 10 m (2.9)

nd the initial values
�(t0) = 1 rad, �̇(t0) = 0.5 rad/s

The integration was performed in the range � ∈ [0,100] rad. The phase trajectory displays the asymptotic decay of the amplitude and
peed of the oscillations of the satellite about the zero equilibrium position, which begin at fairly large values of the initial deflection.
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he lower part shows the dependence of the distance l on the angle of deflection � of the satellite, which demonstrates its asymptotic
onvergences to the value l0.

. Swinging and reorientation of the satellite

It is well known3 that along with the relative equilibrium position in the orbit, at which the axis of symmetry of the satellite is directed
long the radius of the local vertical, the satellite also has a diametrically opposite equilibrium position. We  apply a control law of the form
2.2) to the problem of the swinging of a satellite from an arbitrary neighbourhood of the relative equilibrium position and its diametrical
eorientation. We  note that, as in the case of an ordinary pendulum of variable length,12 when the initial values are

ystem (1.9) with e = 0 and k2 = 1 is uncontrollable for all �0 ≤ � < ∞ under any control law of the form

However, if we could make equilibrium position (2.1) Lyapunov unstable by adjusting the control law, a controlled swinging of the
atellite would become possible when there is a small deviation from this equilibrium position.

We will assume that in control law (2.2) the parameter

(3.1)

he equation of controlled motion of the satellite maintains the form (2.3). The function V(�, �′) (2.4) is positive-definite in the vicinity of

quilibrium (2.1) when condition (2.5) holds. By analogy with the case considered at the end of Section 2, if we  take into account that now
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e can conclude that when the inequalities

old, homogeneous form (2.6) with (2.7) will be positive-definite, and will correspond to positive-definite function (2.4). According to
yapunov’s first instability theorem,16 relative equilibrium position (2.1) of the satellite in a circular orbit is unstable. In addition, by virtue
f the increase in the function (2.4) as |�| increases in the set � ∈ [−�/2, �/2], any trajectory that begins in the vicinity of equilibrium (2.1)
eaves this set. Thus, control (2.2) with a negative value of the parameter a implements the swinging of the satellite about the local vertical.

We will investigate the behaviour of the satellite with control (2.2) for positive and negative values of the parameter a in the vicinity of
iametrically opposite equilibrium position (2.8). Introducing the deflection � = � + x, we  write the equation of perturbed motion

(3.2)

Suppose a = const > 0. Then Eq. (3.2) with control (2.2) is identical to Eq. (2.3) with control (2.2) and a = const < 0. Therefore, the zero
olution x = x′ = 0 of Eq. (3.2) is unstable according to the result obtained in Section 3. Consequently, assuming that the band

s the phase space of the system under investigation, we have asymptotic stability, as a whole, of equilibrium position (2.1) of Eq. (2.3).
Now suppose condition (3.1) is satisfied. Equation of perturbed motion (3.2) with control (2.2) and condition (3.1) is identical to Eq.

2.3) with a = const > 0. Therefore, the zero solution x = x’ = 0 of Eq. (3.2) is asymptotically stable, by the result obtained in Section 2.
Thus, control (2.2) under condition (3.1) implements the diametrical reorientation of the satellite. After swinging about the relative

quilibrium position, at which the axis of dynamic symmetry of the satellite coincides with the local vertical, the satellite swings through

n angle � and performs asymptotically decaying oscillations in the vicinity of its opposite position of relative equilibrium in the orbit.
his process is clearly illustrated by the graphs of the corresponding numerical calculations: because of the symmetry of Fig. 3a about the

 = �/2 axis and of Fig. 3b about the x = −�/2 axis, only the left-hand parts of the graphs are shown for Fig. 3a, and only the right-hand parts
re shown for Fig. 3b.
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Figure 3a (its upper part) shows the phase portrait of Eq. (2.3) under control (2.2) and condition (3.1), which was obtained by numerical
ntegration of the equation of motion in the range � ∈ [0,500 rad] for a = −2.8 m,  numerical values (2.9) of the other parameters and the
nitial data

�(t0) = 0.1 rad, �′(t0) = 0 rad/s

he phase trajectory reflects the process of swinging about zero equilibrium position (2.1) followed by an asymptotic approach to the new
quilibrium position (2.8).

The lower part of Fig. 3a shows the behaviour of the distance l between the centre of mass of the carrier body and the movable mass
s a function of the angle �. Initially, as the satellite swings, the deviations of the distance l from the value l0 in the vicinity of equilibrium
2.1) increase periodically, and after the turning of the satellite and its transit into the vicinity of position (2.8), the distance l converges
symptotically to l0. The turning of the satellite is counter-clockwise.

The swinging process and the turning direction during the reorientation of the satellite depend on the values of its initial deviations
nd the value of the parameter a in control (2.2).

The upper part of Fig. 3b shows the phase portrait of controlled motions (2.3) in the range � ∈ [0,120 rad] for a = −3 m,  the same numerical

alues (2.9) of the parameters of the system and the initial data

�(t0) = 0.1993 rad, �′(t0) = 0 rad/s
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he phase trajectory reflects the process of swinging about zero equilibrium position (2.1) and clockwise turning of the satellite with an
symptotic approach to the new equilibrium position

(3.3)

The lower part of Fig. 3b shows the behaviour of the distance l as a function of the angle �. After periodic increases in the deviation of
he value of l from l0 in the vicinity of equilibrium (2.1) and turning of the satellite, asymptotic convergence of l to l0 in position (3.3) is
bserved.

The transitional reorientation process can be controlled by varying the value of the parameter a under the same initial conditions. The
pper part of Fig. 4 (again, because of the symmetry of the graphs about the x = �/2 axis, only their left-hand parts are presented) shows the
orresponding phase portrait of the controlled motions for a = −2.8, the same values of the other parameters and the same initial conditions
s in Fig. 3b and illustrates the turning of the satellite, which is again counter-clockwise, from position (2.1) to position (2.8). The lower
art of Fig. 4 shows the corresponding behaviour of l.

Note that the magnitude and the rate of variation l̇ of the length l are important characteristics of the transitional process of satellite
eorientation. For example, Fig. 4 shows that l < 0 during the turning, which corresponds to displacement of the movable load along the
ongitudinal axis beyond the centre of mass of the satellite O1. During the reorientation which corresponds to the lower part of Fig. 3b,
he displacements of the load are significantly less and occur in the vicinity of its initial position l0. Clearly, by choosing the parameter a
f control law (2.2) in accordance with the initial deflection of the satellite �(t0), the desired turning direction can be obtained, and the
agnitude of the largest deviation of the load during reorientation of the satellite can be limited.
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