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in Near-Equatorial LEO/VLEO
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This study deals with the attitude motion of small magnetic axisymmetric satellites in

near-equatorial circular LEO/VLEO subjected to the joint action of the environmental torques,

namely, aerodynamic, gravitational, and magnetic. It is shown that if the satellite has only

a longitudinal component of the intrinsic magnetic moment, it is convenient to separate the

attitude motion into the unperturbed motion and the perturbations from the non-potential

components of the considered torques. The bifurcation analysis of the critical points of the

unperturbed dynamic potential demonstrates the influence of the main system parameters on

their existence and stability and provides an intuitive understanding of the possible regimes of

attitude motion. Numerical simulations show that, in addition to regular attitude motion of the

considered satellites, chaotic regimes are also possible.

Nomenclature

𝐴 = longitudinal moment of inertia, kg·m2

𝐴𝑟 = reference area, m2

𝑩 = Earth magnetic field, tesla

𝐶 = transverse moment of inertia, kg·m2

ℎ = orbital altitude, m

𝐻 = Hamiltonian, J

H = Hessian matrix

𝑖 = orbital inclination, rad

𝐽 = moment of inertia matrix

𝒌𝑒 = unit vector in the direction of the Earth’s magnetic field dipole

𝐿 = Lagrangian, J
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𝐿𝑟 = reference length, m

𝑴𝐺 = gravitational torque, N·m

𝑴𝑑 = damping aerodynamic torque, N·m

𝑴𝑀 = magnetic torque, N·m

𝑴𝐶 = conservative component of the magnetic torque, N·m

𝑴𝑁𝐶 = non-conservative component of the magnetic torque, N·m

𝑀𝜃 = restoring aerodynamic torque, N·m

�̄�𝜃 = restoring aerodynamic torque coefficient

�̄�
𝜔𝑘

𝑘
= damping aerodynamic torque coefficients

𝑝𝜙 = generalized impulse corresponding to spin angle, N·m·s

𝑄𝑘 = generalized forces, N·m

�̄�𝑘 = dimensionless generalized forces

𝑅 = Routhian, J

𝑅0 = orbital radius, m

𝑅𝑒 = mean radius of the Earth, m

𝑇 = kinetic energy of the satellite, J

𝑈 = dynamic potential, J

�̄� = dimensionless dynamic potential

𝑽 = velocity vector of the center of mass of the satellite, m/s

𝑉 = potential energy of the satellite, J

𝑉𝐴 = restoring aerodynamic torque potential, J

𝑉𝐺 = gravitational torque potential, J

𝑉𝑀 = magnetic torque potential, J

𝛼 = dimensionless parameter characterizing the magnitude of the restoring aerodynamic torque

𝛽 = dimensionless parameter characterizing joint action of the magnetic and gyroscopic torques

𝛾 = dimensionless parameter characterizing the magnitude of the gravitational torque

𝛿 = dimensionless parameter characterizing the magnitude of the damping aerodynamic torque

𝜀 = dimensionless perturbation parameter

𝜃 = angle of attack, rad

𝜇𝐺 = gravitational parameter of the Earth, m3·s–2

𝝁 = intrinsic magnetic moment of the satellite, A·m2

𝜇𝑚 = geomagnetic dipole moment, A·m2
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𝜇0 = magnetic permeability of vacuum, N/A2

𝜈 = true anomaly, rad

𝜌 = density of the atmosphere, kg/m3

𝜑 = spin angle, rad

𝜓 = precession angle, rad

𝝎 = absolute angular speed, rad/s

Ω = orbital angular speed, rad/s

Subscripts and Supersripts

B = expressed in the Body-fixed frame

O = expressed in the Orbital frame

crit = critical

I. Introduction

Near-equatorial orbits offer certain advantages for satellites. Specifically, such orbits are useful for satellites aimed

to provide information about tropical weather processes [1]. Near-equatorial orbits offer other advantages, such

as for communications: a satellite in such an orbit is able to pass over an equatorial communication center on each

rotation [2], as opposed to the varying ground track of satellites placed in inclined orbits. It should also be noted that

the Earth’s magnetic field near the equator has a varying in-plane component depending on the satellite location, which

makes magnetic attitude control complicated, but still feasible [3, 4].

Although most near-equatorial satellites are in geostationary orbit with zero inclination and an orbital radius

of 42,164 km, a significant fraction of them orbit the Earth at much lower altitudes (less than 700 km). To study the

attitude motion at these altitudes, in addition to the gravity-gradient and magnetic torques, one must consider the

interaction with the atmosphere [5–12]. This interaction generates the aerodynamic torque, which is a considerable

resource for angular stabilization [13–19]. The focus on aerodynamic stabilization arises from the observation that as a

satellite’s size decreases, the impact of aerodynamic torques on its angular motion becomes more pronounced, which

follows from a simple scaling analysis. Specifically, the aerodynamic torque scales with the cube of the characteristic

length of the satellite, whereas the satellite’s moment of inertia scales with the fifth power of this length. Consequently,

as the satellite becomes smaller, its moment of inertia decreases at a faster rate compared to the aerodynamic torque. This

results in an increase in angular acceleration induced by the aerodynamic torque. Currently, with the growing attention

to very low Earth orbits (VLEO) [20–23], the aerodynamic stabilization by means of deployable tail panels [24–26] or

aeroshells [27–29] has become one of the popular trends in today’s design of small satellites.

Deployable elements are characterized by a relatively high risk of uneven deployment. In the case of tail panels, such

3
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a deployment may result in undesirable satellite pointing and considerable high-frequency vibrations [30]. A recent

in-orbit test [27] of a deployable aeroshell revealed another negative consequence of uneven deployment: aerodynamically

stabilized satellites may undesirably spin due to unexpected distortion of the aeroshell. The combined action of the

environmental torques and gyroscopic torque resulting from such spinning can produce multiple torque equilibrium

attitudes. The pioneering works on these equilibrium positions [15, 16] considered only conservative environmental

torques, such as gravitational and restoring aerodynamic torque. In more recent studies, additional torques, such as

inertial torques due to elastic elements [31, 32], magnetic torques [33–36], damping aerodynamic torques [32, 35–37],

are taken into account. Most of these works demonstrate that, under certain circumstances, the satellite may pass from

regular attitude motion into chaotic regimes. One possible way to facilitate studying chaos in the attitude motion is to

use the concepts of unperturbed motion, caused by large torques, and perturbed motion, where perturbations due to

much smaller torques are also considered. If all the torques causing the unperturbed motion are conservative, i.e., have

potential functions depending on the satellite’s attitude, the investigation can be substantially facilitated by the use of the

Lagrangian or Hamiltonian approach. In this case, such concepts as dynamic potential and integrals of motion play an

important role. Previous works discuss the integrals of the attitude motion of satellites in the presence of a magnetic

torque only [38], in the cases of the joint action of the aerodynamic and gravitational torques [14, 15], or magnetic and

gravitational torques [39].

The present study is aimed to develop a framework for analyzing regular and chaotic regimes of the attitude motion

of spinning small axisymmetric magnetic satellites in near-equatorial LEO/VLEO, exploiting the effect of small orbital

inclination on the magnetic torque and taking into consideration the aerodynamic damping. The novelty of the article

is that it is shown that the integrals of the unperturbed attitude motion of a passive near-equatorial satellite contain

terms coming from three torques: aerodynamic, gravitational, and magnetic. The use of these integrals for derivation

of the dynamic potential with the subsequent detailed analysis of its critical points is another novel aspect of the

paper. Moreover, new numerical results and visualizations are obtained for the attitude motion of a typical passive

aerodynamically stabilized satellite which show that, at a certain level of perturbations, its attitude motion can be

chaotic.

The structure of the paper is the following. In Section II, the chosen method of describing the motion is discussed,

and all formulas necessary for modeling the environmental torques are given. Section III is dedicated to the derivation

of the equations of attitude motion. Particular attention is paid to the investigation of the dynamic potential of the

unperturbed motion and the critical points of this potential. In Section IV, the attitude motion of an aerodynamically

stabilized satellite is discussed, the bifurcation analysis of critical points is carried out, and the numerical simulations

are performed, demonstrating the chaotic character of the motion. Finally, in Conclusion, the results are summarized

and analyzed.
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II. Problem Statement
This paper deals with the attitude motion of a particular class of passive aerodynamically stabilized satellites

in LEO/VLEO. Before developing the mathematical model of the attitude motion, we will first formulate the key

assumptions, then introduce the reference frames used, and finally discuss the conservative and non-conservative

environmental torques considered.

A. Key Assumptions

1) The satellite’s orbit is circular and has a small inclination.

2) The satellite is axisymmetric and has a diagonal inertia tensor:

𝐽 =

©«
𝐴 0 0

0 𝐶 0

0 0 𝐶

ª®®®®®®®¬
(1)

where 𝐴 and 𝐶 are respectively the longitudinal and transverse moments of inertia.

3) The vector of the satellite’s intrinsic magnetic moment lies on its longitudinal axis.

4) The Earth’s magnetic field is equivalent to that of a dipole placed in the center of the planet and aligned with its

axis of rotation.

5) The non-conservative torques are small compared to the conservative ones.

B. Reference Frames and Euler angles

In this study, three main reference frames are used.

1) The inertial geocentric equatorial frame 𝐸 (Fig. 1) is defined through a set 𝒆𝑘 , 𝑘 = 1, 2, 3, with the origin at the

center of mass of the Earth. The vectors 𝒆1 and 𝒆2 lie in the equatorial plane, the vector 𝒆1 passes through the

ascending node of the satellite’s orbit and thus coincides with the node line, and the vector 𝒆3 is aligned with the

Earth’s rotation axis.

2) The orbital frame 𝑂 (Fig. 1 and 2) is defined through a set �̂�𝑘 based at the satellite’s center of mass (CoM), the

latter moving along the orbit with a velocity 𝑽. The position of the CoM in the orbit is defined by the mean

anomaly 𝜈 measured from the perigee, which, for circular orbits, can be chosen arbitrarily [40] and, in this study,

coincides with the ascending node. The �̂�1 vector is in the direction of the velocity 𝑽, the �̂�3 vector is directed

along the radius vector of the CoM. Both of these vectors lie in the orbital plane, inclined at an angle 𝑖 with

respect to the equatorial plane. For any vector 𝒗, the coordinate transformation between the orbital and the

5
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inertial geocentric equatorial frames can be performed as follows

𝒗𝐸 = Φ𝒗𝑂 (2)

where

Φ =

©«
− sin 𝜈 0 cos 𝜈

cos 𝑖 cos 𝜈 − sin 𝑖 cos 𝑖 sin 𝜈

cos 𝜈 sin 𝑖 cos 𝑖 sin 𝑖 sin 𝜈

ª®®®®®®®¬
. (3)

3) The body-fixed frame 𝐵 (Fig. 2) is defined through a set of unit vectors �̂�𝑘 , the �̂�1 vector lying along the axis

of symmetry, and �̂�2 and �̂�3 aligned with the satellite’s transverse principal axes. The attitude of the satellite

is determined using a (1, 3, 1) set of Euler angles (𝜓, 𝜃, 𝜑), describing the orientation of the body-fixed frame

relative to the orbital frame. The coordinate transformation between these frames can be performed as follows:

𝒗𝐵 = Θ𝒗𝑂 (4)

where

Θ =

©«
cos 𝜃 cos𝜓 sin 𝜃 sin 𝜃 sin𝜓

− cos 𝜑 sin 𝜃 cos 𝜃 cos 𝜑 cos𝜓 − sin 𝜑 sin𝜓 cos𝜓 sin 𝜑 + cos 𝜃 cos 𝜑 sin𝜓

sin 𝜃 sin 𝜑 − cos 𝜃 cos𝜓 sin 𝜑 − cos 𝜑 sin𝜓 cos 𝜑 cos𝜓 − cos 𝜃 sin 𝜑 sin𝜓

ª®®®®®®®¬
, (5)

𝜓 is the precession angle, −∞ < 𝜓 < ∞; 𝜃 is the angle of attack, 0 < 𝜃 < 𝜋; 𝜑 is the spin angle, −∞ < 𝜑 < ∞.

ô3

ô1

ê1

ê2

ê3V

C

i

ν

ascending
nodeEarth’s

equatorial plane

Orbital plane

Earth’s
rotation axis

ke

Fig. 1 Inertial geocentric equatorial and orbital frames.
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Two auxiliary intermediate coordinate frames 𝐼 and 𝐼 ′ are defined through unit vector sets 𝒊𝑘 , 𝒊′
𝑘
, respectively

(Fig. 2). The orientations of these frames relative to the orbital frame are determined by the above-mentioned rotations:

a single rotation by the angle 𝜓 for the 𝒊𝑘 frame and two successive rotations by the angles 𝜓 and 𝜃 for the 𝒊′
𝑘

frame.

ô3

ô2

î2

b2
b3 î 2́

î1,ô1

С

To Earth’s center

Orbital plane

Local horizontal plane
Vψ

φ

φφ

ψ

ψ

θ θ

θ

î 3́î3 ,

b1î 1́ ,

Fig. 2 Orbital and body-fixed frames. Euler angles.

Let us note that, clearly, the use of Euler angles is not the only way to determine the attitude motion. There are

plenty of alternatives, having their advantages, e.g., quaternions do not suffer from singularities when defining rigid

body orientation, while action-angle variables provide a simpler derivation of the integrals of motion. However, the

present paper uses Euler angles because the dynamic potential (see Section III.A.2), which is of great importance for an

intuitive understanding of the satellite attitude motion under consideration, is best visualized using Euler angles (see

Section IV.C).

C. Environmental Torques

1. Gravitational Torque

The gravitational torque is defined as [14]

𝑴𝐺 = 3Ω2 (�̂�3 × 𝐽 �̂�3) (6)

where Ω =

√︃
𝜇𝐺/𝑅3

0 is the orbital angular speed, 𝑅0 = 𝑅𝑒 + ℎ is the orbit radius, ℎ is the altitude, 𝑅𝑒 is the mean radius

of the Earth, and 𝜇𝐺 is its gravitational parameter. The gravitational torque is well known to be conservative, and, in

terms of the chosen Euler angles, its potential energy can be expressed as

𝑉𝐺 = −3
2
(𝐶 − 𝐴)Ω2sin2𝜃sin2𝜓. (7)

7
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2. Restoring Aerodynamic Torque

For axisymmetric satellites, the restoring aerodynamic torque acts about the nutation axis determined by the unit

vector 𝒊3 (Fig. 2). This torque is defined as [16]:

𝑀𝜃 = 𝑐𝑟 �̄�𝜃 (8)

where

𝑐𝑟 =
𝜌𝑉2

2
𝐴𝑟𝐿𝑟 , (9)

𝐿𝑟 is the reference length, 𝐴𝑟 is the reference area, 𝑉 = Ω𝑅0 is the orbital speed of the CoM, 𝜌 is the density of

the atmosphere calculated in this study using the Jacchia-Bowman 2008 model [41] for mean solar and geomagnetic

activities , �̄�𝜃 is the restoring aerodynamic torque coefficient, either obtained experimentally or approximately calculated

analytically, and typically expressed as a Fourier series with coefficients 𝑏 𝑗 :

�̄�𝜃 =

𝑛∑︁
𝑗=1

𝑏 𝑗 sin 𝑗𝜃 (10)

where 𝑛 is the number of harmonics. The potential function of the restoring aerodynamic torque is

𝑉𝐴 = −
𝜃∫

0

𝑀𝜃𝑑𝜃 = 𝑐𝑟

𝑛∑︁
𝑗=1

1
𝑗
𝑏 𝑗 cos 𝑗𝜃. (11)

3. Damping Aerodynamic Torque

In VLEO, the effect of the aerodynamic damping torque [42] is significant, so it is taken into account in the present

study. The damping torque can be written as

𝑴𝑑 = 𝑐𝑑

©«
�̄�

𝜔1
1 𝜔1

�̄�
𝜔2
2 𝜔2

�̄�
𝜔3
3 𝜔3

ª®®®®®®®¬

𝐵

(12)

where the superscript 𝐵 indicates that the vector is expressed in the body-fixed frame [43],

𝑐𝑑 =
𝜌𝑉

2
𝐴𝑟𝐿

2
𝑟 , (13)

8
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𝜔𝑘 are the components of the angular velocity vector 𝝎,

𝝎 =

©«
𝜔1

𝜔2

𝜔3

ª®®®®®®®¬
=

©«
¤𝜑 + ¤𝜓 cos 𝜃 +Ω cos𝜓 sin 𝜃

¤𝜃 sin 𝜑 − ¤𝜓 cos 𝜑 sin 𝜃 +Ω (cos 𝜃 cos 𝜑 cos𝜓 − sin 𝜑 sin𝜓)

¤𝜃 cos 𝜑 + ¤𝜓 sin 𝜃 sin 𝜑 −Ω (cos 𝜃 cos𝜓 sin 𝜑 + sin𝜓 cos 𝜑)

ª®®®®®®®¬

𝐵

, (14)

expressed in the 𝐵 frame (Fig. 2), and �̄�
𝜔𝑘

𝑘
are the coefficients of the damping torque:

�̄�
𝜔1
1 (𝜃, 𝜑) =

𝑝∑
𝑖=0

𝑟∑
𝑗=0

𝑎1,𝑖, 𝑗 cos 𝑖𝜃 cos 𝑗𝜑,

�̄�
𝜔2
2 (𝜃, 𝜑) =

𝑝∑
𝑖=0

𝑟∑
𝑗=0

𝑎2,𝑖, 𝑗 cos 𝑖𝜃 cos 𝑗𝜑,

�̄�
𝜔3
3 (𝜃, 𝜑) =

𝑝∑︁
𝑖=0

𝑟∑︁
𝑗=0

𝑎2,𝑖, 𝑗 cos 𝑖𝜃 cos 𝑗 (𝜑 + 𝜋/2)

= �̄�
𝜔2
2 (𝜃, 𝜑 + 𝜋/2)

(15)

where 𝑎1,𝑖, 𝑗 and 𝑎2,𝑖, 𝑗 are 2D Fourier series coefficients, 𝑝, 𝑟 are the numbers of harmonics. Clearly, the damping

aerodynamic torque is not conservative, as it is a function of the angular velocity components, by virtue of Eq. (12).

4. Magnetic Torque

The well-known expression for the magnetic torque is [5]

𝑴𝑀 = 𝝁 × 𝑩 (16)

where 𝝁 is the intrinsic magnetic moment. For an axisymmetric magnetic satellite,

𝝁 =

©«
𝑀

0

0

ª®®®®®®®¬

𝐵

, (17)

where 𝑀 is the longitudinal component of the intrinsic magnetic moment, 𝑩 is the magnetic field of the Earth,

𝑩 =
𝜇0𝜇𝑚

4𝜋𝑅3
0
𝑩0, (18)

9
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where 𝜇𝑚 is the geomagnetic dipole moment, 𝜇0 is the magnetic permeability of vacuum, 𝑩0 is a vector defined as [44]

𝑩0 = 3�̂�3 (𝒌𝑒 · �̂�3) − 𝒌𝑒 (19)

where 𝒌𝑒 is a unit vector in the direction of the dipole modeling the Earth’s magnetic field (Fig. 1). Expressed in the

orbital frame, the vector 𝑩0 has the form

𝑩0 =

©«
cos 𝜈 sin 𝑖

cos 𝑖

−2 sin 𝑖 sin 𝜈

ª®®®®®®®¬

𝑂

(20)

where 𝜈 is the true anomaly,

𝜈 = Ω𝑡, (21)

which will be used as the dimensionless time, and 𝑖 is the orbital inclination. Since the inclination of near-equatorial

orbits is small, let us simplify the vector 𝑩0 using the small angle approximation:

𝑩0 ≈

©«
𝑖 cos 𝜈

1

−2𝑖 sin 𝜈

ª®®®®®®®¬

𝑂

. (22)

With Eqs. (17), (18), and (22) taken into account, the magnetic torque Eq. (16) for near-equatorial orbits can be thus

approximately written as a sum of two components:

𝑴𝑀 = 𝑴𝐶 + 𝑖𝑴𝑁𝐶 . (23)

The first component of the magnetic torque 𝑴𝐶 ,

𝑴𝐶 = M

©«
0

cos 𝜃 sin 𝜑 cos𝜓 + cos 𝜑 sin𝜓

cos 𝜃 cos 𝜑 cos𝜓 − sin 𝜑 sin𝜓

ª®®®®®®®¬

𝐵

, (24)

is conservative and has a potential function

𝑉𝑀𝐶 = −M sin 𝜃 cos𝜓 (25)

10

Page 10 of 76

Review copy- Do not distribute

Submitted to Journal of Guidance, Control, and Dynamics for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

where

M =
𝑀𝜇0𝜇𝑚

4𝜋𝑅3
0

(26)

is a constant factor. The second component of the magnetic torque 𝑖𝑴𝑁𝐶 is not conservative, since 𝑴𝑁𝐶 is a function

of the true anomaly:

𝑴𝑁𝐶 (𝜈) = M

©«
0

2 cos 𝜑 cos𝜓 sin 𝜈 − (2 cos 𝜃 sin𝜓 sin 𝜈 + sin 𝜃 cos 𝜈) sin 𝜑

−2(cos 𝜃 cos 𝜑 sin𝜓 + sin 𝜑 cos𝜓) sin 𝜈 + sin 𝜃 cos 𝜑 cos 𝜈

ª®®®®®®®¬

𝐵

. (27)

III. Mathematical Model of Attitude Motion of an Axisymmetric Magnetic Satellite
Since most of the torques considered in this study are conservative, it is convenient to write the equations of motion

in the Lagrangian form using the Euler angles (see Section II.B) as generalized coordinates 𝑞𝑘 , 𝑘 = 1, 2, 3:

𝑞1 = 𝜃, 𝑞2 = 𝜓, 𝑞3 = 𝜑. (28)

The kinetic energy is

𝑇 =
1
2

(
𝐴𝜔1

2 + 𝐶 (𝜔2
2 + 𝜔3

2)
)
, (29)

and, after substitution of Eq. (14), it can be written as

𝑇 =
1
2
𝐴
[
¤𝜑 + ¤𝜓 cos 𝜃 +Ω cos𝜓 sin 𝜃

]2 + 1
2
𝐶

[
¤𝜃2 +

(
Ω cos 𝜃 cos𝜓 − ¤𝜓 sin 𝜃

)2 − 2Ω ¤𝜃 sin𝜓 +Ω2sin2𝜓
]
. (30)

The potential energy is

𝑉 = 𝑉𝐺 +𝑉𝐴 +𝑉𝑀𝐶 (31)

where 𝑉𝐺 , 𝑉𝐴, and 𝑉𝑀𝐶 are defined by Eqs. (7), (11), and (25), respectively. Using Eqs. (30) and (31), one can obtain

the Lagrangian as

𝐿 = 𝑇 −𝑉 =

=
1
2
𝐴
[
¤𝜑 + ¤𝜓 cos 𝜃 +Ω cos𝜓 sin 𝜃

]2 + 1
2
𝐶

[
¤𝜃2 +

(
Ω cos 𝜃 cos𝜓 − ¤𝜓 sin 𝜃

)2 − 2Ω ¤𝜃 sin𝜓 +Ω2sin2𝜓
]

+ 3
2
(𝐶 − 𝐴)Ω2sin2𝜃sin2𝜓 − 𝑐𝑟

𝑛∑︁
𝑗=1

1
𝑗
𝑏 𝑗 cos 𝑗𝜃 +M sin 𝜃 cos𝜓.

(32)

Note that the generalized coordinate 𝜑 does not appear in the Lagrangian (32). In the case of conservative torques, one

can reduce the number of degrees of freedom using Routh’s procedure [45], and the attitude motion of the satellite can
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be described simply as the motion of its longitudinal axis.

In order to take advantage of these benefits, in this study, the attitude motion will be split into the unperturbed

part and perturbations. The non-conservative torques acting on the satellite are the damping aerodynamic torque

𝑴𝑑 [Eq. (12)] and the part of magnetic torque 𝑖𝑴𝑁𝐶 (see (27)); compared to the other torques acting on the satellite,

both of these torques are small, so it is convenient to consider them as perturbations. Then the satellite’s motion under

the conservative torques can be called unperturbed. Accordingly, the perturbed motion is the attitude motion of the

satellite subjected to both conservative and non-conservative torques.

A. Unperturbed Motion

1. Routh Equations of Motion

Since the Lagrangian (32) does not depend on the spin angle 𝜑, the unperturbed motion has an integral:

𝑝𝜑 = 𝑐𝑜𝑛𝑠𝑡 (33)

where the generalized impulse𝑝𝜑 is equal to the projection of the satellite’s angular momentum on the spin axis,

𝑝𝜑 =
𝜕𝐿

𝜕 ¤𝜑 = 𝐴
(
¤𝜑 + ¤𝜓 cos 𝜃 +Ω cos𝜓 sin 𝜃

)
. (34)

Further, the Lagrangian (32) does not depend on the time explicitly, so the Hamiltonian of the unperturbed system is

also a constant:

𝐻 =

2∑︁
𝑘=1

𝜕𝑅

𝜕𝑞𝑘
¤𝑞𝑘 − 𝑅 = 𝑐𝑜𝑛𝑠𝑡

=
1
2
𝐶

(
¤𝜃2 + ¤𝜓2sin2𝜃

)
− 1

2
𝐶Ω2

(
cos2𝜃cos2𝜓 + sin2𝜓

)
− (𝑝𝜑Ω +M) cos𝜓 sin 𝜃

− 3
2
(𝐶 − 𝐴)Ω2sin2𝜃sin2𝜓 + 𝑐𝑟

𝑛∑︁
𝑗=1

1
𝑗
𝑏 𝑗 cos 𝑗𝜃

(35)

where a constant term 𝑝2
𝜑/(2𝐴) has been omitted. In Eq. (35), 𝑅 is the Routhian of the system,

𝑅 = 𝐿 − 𝑝𝜑 ¤𝜑, (36)
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from which the equations of the unperturbed motion can be found using the standard procedure [45]:

𝑑

𝑑𝑡

𝜕𝑅

𝜕 ¤𝑞𝑘
− 𝜕𝑅

𝜕𝑞𝑘
= 0, 𝑘 = 1, 2,

¤𝑝𝜑 = 0.

(37)

Solving Eqs. (37) for ¥𝑞𝑘 and dividing the results by 𝐴Ω2 gives the dimensionless equations of the unperturbed motion:

𝛾𝜃′′ = 𝛼�̄�𝜃 + 𝛽 cos 𝜃 cos𝜓 − 3
2

sin2 𝜓 sin 2𝜃 − 𝜅𝜓′ sin 𝜃 + 𝛾

[(
1
2
− cos 2𝜓

)
sin 2𝜃 + (2 cos𝜓 sin 𝜃 + cos 𝜃𝜓′) 𝜓′ sin 𝜃

]
,

𝛾𝜓′′ =𝜅𝜃′ csc 𝜃 + 2𝛾 [sin 2𝜓 − 𝜃′ (cos𝜓 + 𝜓′ cot 𝜃)] − 𝛽 sin𝜓 csc 𝜃 − 3
2

sin 2𝜓,

𝛾𝜑′′ =𝛾 [(𝜓′ sin 𝜃 − 4 cos 𝜃 cos𝜓) sin𝜓 + 𝜃′ (cos 𝜃 cos𝜓 + 𝜓′ (cos 𝜃 cot 𝜃 + csc 𝜃))] + 𝛽 sin𝜓 cot 𝜃 + 3
2

cos 𝜃 sin 2𝜓 − 𝜅𝜃′ cot 𝜃
(38)

where ( )′ denotes derivatives with respect to the true anomaly 𝜈, and

𝜅 =
𝑝𝜑

𝐴Ω
= 𝜑′ + 𝜓′ cos 𝜃 + sin 𝜃 cos𝜓, (39)

𝛽 = 𝜅 + 𝜇, (40)

𝜇 =
M
𝐴Ω2 =

𝑀𝜇0𝜇𝑚

4𝐴𝜇𝐺𝜋
, (41)

𝛼 =
𝐴𝑟𝐿𝑟 𝜌𝑅

2
0

2𝐴
, (42)

𝛾 =
𝐶

𝐴
(43)

are dimensionless quantities. Note that 𝜅 and 𝛽 remain constant in the case of the unperturbed motion by virtue of

Eqs. (33), (39), and (41). This allows to rewrite the integral of motion (33) as

𝜅 = 𝑐𝑜𝑛𝑠𝑡 (44)

or

𝛽 = 𝑐𝑜𝑛𝑠𝑡. (45)

It follows from Eqs. (40) and (41) that, despite that the gyroscopic torque from the spin and the magnetic torque are of

a completely different nature, in the case of an axisymmetric magnetic satellite, their joint action is mathematically

represented by a single dimensionless parameter 𝛽 [Eq. (40)], which allows mutual compensation of these torques, since

they have the same effect on the satellite. This is due to the fact that, in the unperturbed motion, the magnetic and the
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gyroscopic torques are determined virtually identically, as each of them is a cross product of a vector aligned with the

longitudinal axis of the satellite and a vector perpendicular to the orbital plane. The magnetic torque is a cross product

of the satellite’s magnetic moment and the Earth’s magnetic field [Eq. (16)]. In this study, the former is assumed to be

aligned with the longitudinal axis of the satellite [Eq. (17)], and the latter, in the unperturbed motion, for which 𝑖 = 0, is

perpendicular to the orbital plane. In its turn, the gyroscopic torque is a cross product of the longitudinal component

of the satellite’s angular momentum 𝑝𝜑 �̂�1 and the orbital angular velocity vector Ω�̂�2, the latter perpendicular to the

orbital plane.

It is worth noting that the integrals of motion (33), (35), (44), (45) contain terms coming from all the three torques

considered: aerodynamic, gravitational, and magnetic. As it has been mentioned in the Introduction, this determines

the novelty of the present study.

2. Dynamic Potential

The Hamiltonian (35) can be rewritten in the following form:

𝐻 = 𝑇∗ +𝑈 = 𝑐𝑜𝑛𝑠𝑡 (46)

where 𝑇∗ = 1
2𝐶

(
¤𝜃2 + ¤𝜓2sin2𝜃

)
is the part of the kinetic energy that is quadratic in the generalized velocities, and 𝑈 is

the dynamic potential, which depends only on the generalized coordinates and not on the generalized velocities:

𝑈 = 𝑐𝑟

𝑛∑︁
𝑗=1

1
𝑗
𝑏 𝑗 cos 𝑗𝜃 − 3

2
(𝐶 − 𝐴)Ω2sin2𝜃sin2𝜓 − 1

2
𝐶Ω2

(
cos2𝜃cos2𝜓 + sin2𝜓

)
− (𝑝𝜑Ω +M) sin 𝜃 cos𝜓. (47)

For simplicity, the dynamic potential can be represented in dimensionless form:

�̄� =
𝑈

𝐴Ω2

= 𝛼

𝑛∑︁
𝑗=1

1
𝑗
𝑏 𝑗 cos 𝑗𝜃 + 3

2
(1 − 𝛾)sin2𝜃sin2𝜓 − 1

2
𝛾

(
cos2𝜃cos2𝜓 + sin2𝜓

)
− 𝛽 sin 𝜃 cos𝜓

(48)

where each term corresponds to a potential energy of a different nature: the first term represents the potential energy due

to the aerodynamic restoring torque, the second is related to the action of the gravitational torque, the third term stands

for the potential energy due to the inertial gyroscopic torque from the orbital rotation, and the last term combines the

potential energy due to the gyroscopic torque from the spin and the magnetic torque. Eq. (48) describes a large variety

of shapes of the potential surface, depending on the coefficients 𝛼, 𝛽, 𝛾, and 𝑏 𝑗 . Some of these shapes are considered in

the case study [Section IV].
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3. Critical Points

The critical points 𝐶 of the dynamic potential are characterized by ¤𝜃 = ¤𝜓 = 0, and are defined by the equations

𝜕�̄�

𝜕𝜓

����
𝑎𝑡 𝐶

= 0, (49)

𝜕�̄�

𝜕𝜃

����
𝑎𝑡 𝐶

= 0, (50)

or, explicitly,

[𝛽 + (3 − 4𝛾) sin 𝜃 cos𝜓] sin 𝜃 sin𝜓 = 0, (51)

𝛼�̄�𝜃 + 𝛽 cos 𝜃 cos𝜓 − 1
2
[
𝛾 + (3 − 4𝛾) sin2𝜓

]
sin 2𝜃 = 0. (52)

These general equations describe the following three groups of critical points.

Group 𝐶1. For this group, sin𝜓 ≠ 0. In this case, the equilibrium angular positions 𝜓 = 𝜓1 and 𝜃 = 𝜃1 satisfy the

following system of equations:

𝛽 + (3 − 4𝛾) sin 𝜃 cos𝜓 = 0, (53)

𝛼�̄�𝜃 −
3
2
(1 − 𝛾) sin 2𝜃 = 0. (54)

Note that Eq. (53) directly follows from Eq. (51), since, for the chosen set of Euler angles, 0 < 𝜃 < 𝜋. Then solving

Eq. (53) with respect to 𝛽 and substituting the result into Eq. (52) leads to Eq. (54). It follows from Eq. (53) that

𝜓1 = ± arccos
𝛽 csc 𝜃1

4𝛾 − 3
(55)

where 𝜃1 is the angle of attack corresponding to the critical points 𝐶1, which can be found from Eq. (54). Clearly, the

critical points 𝐶1 exist only if

−𝛽crit ≤ 𝛽 ≤ 𝛽crit (56)

where

𝛽crit = (4𝛾 − 3) sin 𝜃1. (57)

It is worth noting that, when 𝛽 = 0, the system of equations (53) and (54) has an infinite number of solutions, for which

𝜓1 is arbitrary and 𝜃1 = 0 or 𝜃1 = 𝜋. This case cannot be modeled using the chosen set of Euler angles, but such motion

is highly unlikely to occur in practice, therefore, it is not considered in this study.
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Group 𝐶2. For this group, 𝜓 = 𝜓2 = 0, and 𝜃 = 𝜃2 can be found from the equation

𝛼�̄�𝜃 + 𝛽 cos 𝜃 − 1
2
𝛾 sin 2𝜃 = 0. (58)

Group 𝐶3. For this group, 𝜓 = 𝜓3 = ±𝜋 and 𝜃 = 𝜃3 satisfies the equation

𝛼�̄�𝜃 − 𝛽 cos 𝜃 − 1
2
𝛾 sin 2𝜃 = 0. (59)

Both Eqs. (58) and (59) follow from Eq. (52) with the substitutions 𝜓 = 𝜓2 = 0 and 𝜓 = 𝜓3 = ±𝜋, respectively. Since

�̄�𝜃 [Eq. (10)] and sin 2𝜃 are odd functions of 𝜃, the roots of the Eqs. (58) and (59) are related as follows:

𝜃3 (𝛽) = 𝜃2 (−𝛽). (60)

Note that the critical points 𝐶2 and 𝐶3 correspond to the case when the satellite’s longitudinal axis lies in the local

horizontal plane (Fig. 2), since, at these points, the precession angle 𝜓 is equal 0 or ±𝜋. This is not the case for the

critical points 𝐶1, for which the precession angle can take any value. It should be also mentioned that Eqs. (53), (54),

(58), (59), which describe the critical points from all three groups, are consistent with the results of other researchers [15]

and generalize these results to the case of an axisymmetric magnetic satellite.

Each critical point can be a maximum, a minimum, or a saddle point of the dynamic potential. The maxima and

minima respectively correspond to the unstable and stable equilibrium positions of the satellite’s longitudinal axis. The

condition for a critical point to be a maximum is

detH > 0, trH < 0, (61)

the condition for a minimum is

detH > 0, trH > 0, (62)

and the condition for a saddle point is

detH < 0 (63)

where

H =

©«
𝜕2�̄�

𝜕𝜃2
𝜕2�̄�

𝜕𝜃𝜕𝜓

𝜕2�̄�

𝜕𝜓𝜕𝜃

𝜕2�̄�

𝜕𝜓2

ª®®®®¬
(64)

is the Hessian matrix of the dimensionless dynamic potential.
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B. Perturbed Motion

The equations of motion for the perturbed system are

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤𝑞𝑘
− 𝜕𝐿

𝜕𝑞𝑘
= 𝑄𝑘 , 𝑘 = 1, 2, 3 (65)

where the generalized forces 𝑄𝑘 are

𝑄𝑘 =
𝜕

𝜕 ¤𝑞𝑘
[(𝑴𝑑 + 𝑖𝑴𝑁𝐶 ) · 𝝎] (66)

where the vectors 𝑴𝑑 , 𝝎 are defined by Eqs. (12), (14), respectively. The generalized forces can be written as

𝑄𝑘 = 𝐴Ω2�̄�𝑘 , (67)

�̄�1 = 𝛿�̄�
𝜔2
2 (cos 𝜃 cos 𝜑 cos𝜓 − sin 𝜑 sin𝜓 + 𝜃′ sin 𝜑 − 𝜓′ cos 𝜑 sin 𝜃) sin 𝜑

+ 𝛿�̄�
𝜔3
3 (𝜃′ cos 𝜑 + 𝜓′ sin 𝜃 sin 𝜑 − cos 𝜃 cos𝜓 sin 𝜑 − cos 𝜑 sin𝜓) cos 𝜑 − 𝜀 (cos 𝜈 sin 𝜃 + 2 cos 𝜃 sin 𝜈 sin𝜓) ,

�̄�2 = 𝛿[�̄�𝜔1
1 𝜅 cos 𝜃 + �̄�

𝜔2
2 (𝜓′ cos 𝜑 sin 𝜃 − 𝜃′ sin 𝜑 + sin 𝜑 sin𝜓 − cos 𝜃 cos 𝜑 cos𝜓) cos 𝜑 sin 𝜃]

+ 𝛿�̄�
𝜔3
3 (𝜃′ cos 𝜑 + 𝜓′ sin 𝜃 sin 𝜑 − cos 𝜃 cos𝜓 sin 𝜑 − cos 𝜑 sin𝜓) sin 𝜃 sin 𝜑 − 2𝜀 cos𝜓 sin 𝜃 sin 𝜈,

�̄�3 = 𝛿�̄�
𝜔1
1 𝜅

(68)

where

𝛿 =
𝐴𝑟𝐿

2
𝑟 𝜌𝑅0

2𝐴
, (69)

𝜀 = 𝜇𝑖 (70)

are dimensionless parameters. In Eq. (70), the quantity 𝜇 is determined by Eq. (41). Taking into account Eqs. (39)–(42)

and (67)–(70), the equations of perturbed motion (65) can be represented in the dimensionless form

𝛾𝜃′′ = 𝛼

𝑛∑︁
𝑗=1

𝑏 𝑗 sin 𝑗𝜃 + 𝛽 cos 𝜃 cos𝜓 − 3
2

sin2 𝜓 sin 2𝜃 − 𝜅𝜓′ sin 𝜃 + 𝛾

[(
1
2
− cos 2𝜓

)
sin 2𝜃 + (2 cos𝜓 sin 𝜃 + 𝜓′ cos 𝜃) 𝜓′ sin 𝜃

]
+ 𝛿 𝑓1 (𝜓, 𝜓′, 𝜃, 𝜃′, 𝜑) + 𝜀𝑔1 (𝜓, 𝜃, 𝜑, 𝜈) ,

𝛾𝜓′′ = 𝜅𝜃′ csc 𝜃 + 2𝛾 [sin 2𝜓 − 𝜃′ (cos𝜓 + 𝜓′ cot 𝜃)] − 𝛽 sin𝜓 csc 𝜃 − 3
2

sin 2𝜓

+ 𝛿 𝑓2 (𝜓, 𝜓′, 𝜃, 𝜃′, 𝜑) + 𝜀𝑔2 (𝜓, 𝜃, 𝜑, 𝜈) ,

𝛾𝜑′′ = 𝛾 [(𝜓′ sin 𝜃 − 4 cos 𝜃 cos𝜓) sin𝜓 + 𝜃′ (cos 𝜃 cos𝜓 + 𝜓′ (cos 𝜃 cot 𝜃 + csc 𝜃))] + 𝛽 sin𝜓 cot 𝜃 + 3
2

cos 𝜃 sin 2𝜓 − 𝜅𝜃′ cot 𝜃

+ 𝛿 𝑓3 (𝜓, 𝜓′, 𝜃, 𝜃′, 𝜑, 𝜑′)
(71)
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where 𝛿 𝑓𝑘 and 𝜀𝑔𝑘 are respectively perturbations from the aerodynamic damping and the non-conservative component

of the magnetic torque. Note that, in contrast to the unperturbed motion, the dimensionless quantities 𝜅 and 𝛽, which are

still defined by Eqs. (39) and (40), respectively, are no longer constant in the perturbed motion.

IV. Case Study
In this section, we will present an example axisymmetric aerodynamically stabilized satellite, analyze the critical

points of its unperturbed dynamic potential, numerically simulate the perturbed motion, and finally visualize the

simulation results using Poincaré sections. Due to the complexity of the connections between its different parts, this

section starts from a visual guide shown in Fig. 3. This schematic guide is intended to help the reader follow the logical

sequence of all the steps taken.

Unperturbed
Dynamic Potential

[Eq. (48)] Satellite Geometry [Fig. 4]

Satellite Aerodynamics [Fig. 5-7]

IV.A
Equations of

Perturbed Motion
[Eqs. (71)]

Critical Points Analysis

Choice of Altitudes

Bifurcation Diagrams [Fig. 9-12]

Choice of 𝛽

Potential Surfaces [Fig. 15-18]

Numerical Simulations

Poincaré Sections [Fig. 19-26]

IV.C

IV.B

IV.D

Fig. 3 Visual guide to Section IV.

A. Example Satellite

Consider an axisymmetric magnetic satellite in LEO/VLEO, whose shape is similar to the one of the vehicle

discussed in Ref. [46]. The example satellite has three parts: a body, a conic membrane, and an inflatable torus (Fig. 4).

The body is a cylinder with a length 0.4 m and a base diameter 0.2 m, equipped with a hemispherical nose of a
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radius 0.1 m. The aeroshell has a diameter of 1.05 m and a flare angle of 65°. The inflatable torus is a tube of a diameter

of 0.15 m. The overall diameter of the vehicle is 𝐿𝑟 = 2𝑟 = 1.3 m with a corresponding area 𝐴𝑟 = 𝜋𝑟2 = 1.33 m2.

These two values are used for the calculation of the aerodynamic coefficients as reference length and reference area,

respectively. The center of mass of the satellite is considered to coincide with the body’s geometric center. The

longitudinal and transverse moments of inertia are 𝐴 = 0.01 kg · m2 and 𝐶 = 0.1 kg · m2, respectively.

Fig. 4 Example satellite.

0 π

4
π

2
3 π
4

π

-0.020

-0.015

-0.010

-0.005

0.000

0.005

θ

M
θ

Numerical calculation Fourier series (n = 15)

Fig. 5 Coefficient of restoring aerodynamic torque.
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Numerical calculation Fourier series (p = 5, r = 5)

Fig. 6 The damping aerodynamic torque coefficient �̄�𝜔1
1 .

Numerical calculation Fourier series (p = 10, r = 2)

Fig. 7 The damping aerodynamic torque coefficient �̄�𝜔2
2 .

The aerodynamic coefficients of the satellite were calculated by dividing its surface into triangular elements,
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calculating the normal and tangential coefficients assuming a free-molecular flow [32, 47, 48], and integrating these

coefficients over the entire surface. Fig. 5 represents the results of the numerical calculation of the coefficient of

restoring aerodynamic torque �̄�𝜃 , as well as an approximation of these results by a Fourier series [Eq. (10)]. The

same information regarding the coefficients of the damping torque is shown in Figs. 6 and 7. Note that this time the

approximation is made by means of a 2D Fourier series [Eqs. (15)]. By virtue of the last of Eqs. (15), the plot for �̄�𝜔3
3

is redundant and thus is not shown.

B. Critical Points Analysis. 3D Bifurcation Diagrams

Equations (49) and (50) describing the critical points of the dynamic potential have a rich and complicated solution

structure to be revealed in the present section. If the satellite is specified, then the number, location, and stability of the

critical points depend on only two constant parameters: the orbital altitude ℎ and dimensionless parameter 𝛽 [Eq. (40)].

The analysis of the critical points of the example satellite implies (1) calculation of the critical points belonging to

all three groups, introduced in Subsection III.A.3, by solving Eqs. (53),(54), (58), (59) for different values of ℎ and 𝛽;

(2) determination of the character of each point using the conditions (61)–(63). This analysis will allow to choose

some combinations of ℎ and 𝛽 that give typical shapes of the dynamic potential useful for practical purposes. On the

other hand, we will also look for complicated shapes of the potential having multiple equilibrium positions and, most

importantly, saddle points. The attitude motion near these points, in the presence of perturbations, may be chaotic and is

therefore of particular interest.

It is convenient to start the analysis of the critical points from the determination of the angles of attack 𝜃1

corresponding to Group 𝐶1. For a specific satellite, these angles depend only on the altitude and are determined

by Eq. (54). Fig. 8 depicts the angles 𝜃1 for the example satellite, which form two distinct sets 𝜃1,I and 𝜃1,II,

𝜋/2 ≤ 𝜃1,I < 𝜋,

0 < 𝜃1,II < 𝜋/2.
(72)

It can be seen from Fig. 8 that, for the example satellite, the angle of attack 𝜃1,I varies with altitude quite slowly. A more

complicated dependence on altitude is demonstrated by the set 𝜃1,II, especially at ℎ3 = 613 km, where there are five

critical points, two of them being saddles, so let us choose this altitude for further analysis. Fig. 8 also illustrates

an interesting fact that there are no critical points in the set 𝜃1,II above a certain altitude. This can be explained as

follows. The angles of attack corresponding to the critical points 𝐶1 shown in Fig. 8 are determined by Eq. (54), the

left-hand side of which is actually a sum of all pitch torques. The first term is the aerodynamic torque, the second one

represents the gravitational torque. At VLEO altitudes, where the air is dense and consequently where the parameter 𝛼

[Eq. (42)] is high, the first term dominates, so the critical points in this case are basically the two roots of the pitch
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torque coefficient 𝑀𝜃 (see Fig. 5), which satisfy the condition 0 < 𝜃 < 𝜋. At high altitudes, 𝛼 is very close to zero, thus,

the second term dominates on the left-hand side of Eq. (54), meaning that there is only one root, the one that is close to

𝜋/2. Thus, there should be an altitude, above which the satellite has only one critical point of the type 𝐶1. Clearly,

this altitude depends on the satellite parameters. For the example satellite, it is about 615 km. Another interesting

altitude for an aerodynamically stabilized satellite is ℎ1 = 200 km, which corresponds to the VLEO region. To make the

further analysis more general, we will also consider the altitudes ℎ2 = 400 km and ℎ4 = 800 km, which, together with

ℎ1 and ℎ3, form a set of four almost equally spaced altitudes. The labels a–j in Fig. 8 denote the all critical points 𝐶1 at

the altitudes of interest. These labels will be used in the following figures in order to facilitate their perception by the

reader and highlight interconnections.

200 300 400 500 600 700 800
0

π

4

π

2

h1 h2 h3 h4

h [km]

θ 1

611 613 615

π

2

π

4

3 π
8
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c

g
h

i

j

II

I

a b
c

d

e f

g

h

i

j

Fig. 8 Angles of attack corresponding to the critical points 𝐶1 [Eq. (54)]. Yellow: saddle points; green: stable
equilibrium. Labels a–j refer to the curves marked in Figs. 9–13.
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Fig. 9 Bifurcation diagram for critical points at ℎ1 = 200 km. Red: unstable equilibrium; yellow: saddle points;
green: stable equilibrium. Labels a, e correspond to the points 𝐶1 marked in Figs. 8 and 13.

Fig. 10 Bifurcation diagram for critical points at ℎ2 = 400 km. Red: unstable equilibrium; yellow: saddle
points; green: stable equilibrium. Labels b, f correspond to the points 𝐶1 marked in Figs. 8 and 13.
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Fig. 11 Bifurcation diagram for critical points at ℎ3 = 613 km. Red: unstable equilibrium; yellow: saddle
points; green: stable equilibrium. Labels c, g–j correspond to the points 𝐶1 marked in Figs. 8 and 13.

Once the altitudes of interest ℎ1...ℎ4 are chosen, one can draw a three-dimensional bifurcation diagram for each of

these altitudes in a 3D space (𝜃, 𝜓, 𝛽) with 𝛽 as parameter (Figures 9–12). The bifurcation diagrams depict the critical

points from all three groups and are formed by the solutions of Eqs. (53),(54), (58), (59). The character of each point

was determined using the conditions (61)–(63). In Figures 9–12, as in all figures in this section, the following color

coding is used: red for unstable points, yellow for saddles, and green for stable points. In order to highlight different

groups of critical points in the overall bifurcation diagrams, Figures 9–12 have some additional elements. The labels

a–j mark the curves that are formed by the critical points of Group 𝐶1 only, while the gray planes 𝜓 = 0 and 𝜓 = ±𝜋

highlight the critical points from Groups 𝐶2 and 𝐶3, respectively.
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Fig. 12 Bifurcation diagram for critical points at ℎ4 = 800 km. Red: unstable equilibrium; yellow: saddle
points; green: stable equilibrium. Label d corresponds to the points 𝐶1 in Figs. 8 and 13.

The analysis of the three-dimensional bifurcation diagrams allows making a general remark that at each of the

altitudes of interest the example satellite has at least one stable equilibrium position, regardless of the value of 𝛽. A typical

evolution of a stable point 𝐶𝑖 with growing 𝛽 is the following: (𝐶3 for 𝛽 < −𝛽𝑐𝑟𝑖𝑡 ) → (𝐶1 for −𝛽𝑐𝑟𝑖𝑡 ≤ 𝛽 ≤ 𝛽𝑐𝑟𝑖𝑡 ) →

(𝐶2 for 𝛽 > 𝛽𝑐𝑟𝑖𝑡 ) where 𝛽𝑐𝑟𝑖𝑡 is determined by Eq. (57). The bifurcation diagram for 800 km is the simplest, since it

only has one stable 𝐶1 curve. The diagrams for altitudes of 400 km and 200 km have similar, but more complicated

structure, now with one stable and one unstable 𝐶1 curves. The richest bifurcation diagram corresponds to the altitude

of 613 km, since it includes five 𝐶1 curves, of which three are stable and two are unstable. Note that, at all altitudes,

each intersection of the 𝐶2 curve with a 𝐶1 curve changes the stability character of the former; this is also true for the

𝐶3–𝐶1 intersections.

Figures 13 and 14 are meant to provide additional perspectives on the dependencies of 𝜓1 and 𝜃2 on ℎ and 𝛽, being

projections of the three-dimensional bifurcation curves on different planes in a 3D space (𝜃, 𝜓, 𝛽). The projection of

𝐶1 curves on the plane (𝛽, 𝜓) shown in Fig. 13 illustrates the above-mentioned fact that the 𝐶1 points exist in a rather

narrow diapason of 𝛽, as follows from Eq. (56). Figure 14 represents a projection of the 𝐶2 curves on the plane (𝛽, 𝜃)

emphasizing that the angles 𝜃2 form two distinct sets 𝜃2,A and 𝜃2,B,

𝜋/2 ≤ 𝜃2,A < 𝜋,

0 < 𝜃2,B ≤ 𝜋/2.
(73)

The graphs 𝜃3 (𝛽) are not shown, since by virtue of Eq. (60) they are simply 𝜃2 (𝛽) curves (Fig. 14) mirrored with respect

to the ordinate axis.
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Fig. 13 Precession angles corresponding to the critical points 𝐶1 [Eq. (55)]. Yellow: saddle points; green: stable
equilibrium. Labels a–j correspond to the points marked in Fig. 8.
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Fig. 14 Angles of attack corresponding to the critical points 𝐶2 [Eq. (58)]. Red: unstable equilibrium; yellow:
saddle points; green: stable equilibrium. Dotted dashed: 200 km, dashed: 400 km, solid: 613 km, dotted:
800 km.
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C. Unperturbed Dynamic Potential Surfaces

The dimensionless dynamic potential is of significant importance to the intuitive perception of the possible attitude

motions of the satellite, since, for small perturbations, the projections of the phase trajectories of the satellite on

the (𝜃, 𝜓) plane will closely follow the equipotential lines.

Figures 13 and 14 allow choosing the particular values of the dimensionless quantity 𝛽 for the visualizations of the

dimensionless dynamic potential to be presented in the present subsection. Namely, we choose for ℎ = ℎ1 = 200 km

𝛽 = 5000; 25000; 50000; for ℎ = ℎ2 = 400 km 𝛽 = 10; 30; 100; for the other altitudes, 𝛽 = 5; 30; 40. The choice of

higher values of 𝛽 for lower altitudes is substantiated by the fact that, the lower the orbit, the higher the possible initial

values of the spin rate 𝜑′ which contributes to the value of 𝛽 (see Eqs. (39), (40)). In the authors’ opinion, the values

chosen allow, on the one hand, to demonstrate the peculiarities of the evolution of the potential with changing 𝛽, and, on

the other hand, to show some typical and some unusual shapes of the potential.

Fig. 15 Dimensionless dynamic potential (ℎ = ℎ1 = 200 km). Red dots: unstable equilibrium; yellow dots:
saddle points; green dots: stable equilibrium.

Fig. 16 Dimensionless dynamic potential (ℎ = ℎ2 = 400 km). Red dots: unstable equilibrium; yellow dots:
saddle points; green dots: stable equilibrium.
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Fig. 17 Dimensionless dynamic potential (ℎ = ℎ3 = 613 km). Red dots: unstable equilibrium; yellow dots:
saddle points; green dots: stable equilibrium.

Fig. 18 Dimensionless dynamic potential (ℎ = ℎ4 = 800 km). Red dots: unstable equilibrium; yellow dots:
saddle points; green dots: stable equilibrium.

Figures 15–18 illustrate an evolution of the dynamic potential surfaces for the values of the parameter 𝛽 chosen

above. The contour plots of the dynamic potential shown below the surfaces can be interpreted as projections of the

phase diagrams of the unperturbed motion on the plane (𝜃, 𝜓). In each contour plot, the corresponding critical points

of the potential are shown. Hereinafter, the unstable equilibrium positions are marked in red, the saddle points are

yellow, and the green dots represent the stable equilibrium positions. Note that the equipotential lines passing through

the saddle points are the separatrices of the unperturbed phase space. From the analysis of the changing shape of the

surfaces and the equipotential curves, it can be seen that, as previously discussed, the number of critical points and their

stability character change significantly with 𝛽. Note that in some cases, for example, the ones illustrated by Fig. 16,a,b,

Fig. 17,a,b, and Fig. 18,b, inside bigger potential wells there are smaller ones. Clearly, motion in the smaller wells is

only possible in the case of relatively weak perturbations.
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D. Simulations of Perturbed Motion. Poincaré sections

This section aims to demonstrate that the perturbed motion can be chaotic, in the sense that slight changes in initial

conditions can lead to qualitative changes in the attitude motion, such as the passing of the phase trajectory from one

potential well to another and back, or sudden precession of the longitudinal axis. To clearly show these phenomena,

numerical simulations will be performed for the cases when the unperturbed dynamic potential has complicated shapes,

with saddle points lying between different potential wells. Accordingly, based on Figures 15–18, the following simulation

parameters have been chosen:

ℎ = ℎ4 = 800 km: 𝛽0 = 30 (Fig. 18, b);

ℎ = ℎ3 = 613 km: 𝛽0 = 5 (Fig. 17, a);

ℎ = ℎ2 = 400 km: 𝛽0 = 100 (Fig. 16, c);

ℎ = ℎ1 = 200 km: 𝛽0 = 25000 (Fig. 15, b).

Note that the dimensionless quantity 𝛽 is now written as 𝛽0, in order to emphasize that it is the initial value of the

quantity, which does not remain constant in the perturbed motion. The numerical simulations will be performed via the

numerical integration of Eqs. (71) using an explicit Runge–Kutta method for different levels of the perturbations due to

the orbital inclination, which are characterized by the dimensionless parameter 𝜀 [Eq. (70)].

The results of the simulations, which will be illustrated and discussed in detail further, lead to a general conclusion

that, with increasing 𝜀, the satellite tends to pass sequentially through the following three regimes of attitude motion:

Regime 1. Satellite remains in the initial potential well.

Regime 2. Satellite passes from one potential well to another without full rotation around the precession axis. The

higher the parameter 𝜀, the more distant wells are reached.

Regime 3. Satellite passes from one potential well to another with full rotation(s) around the precession axis.

The last two regimes can be considered chaotic, since whether the satellite passes from one well to another strongly

depends on the initial conditions.

1. Altitude 800 km

Figures 19 and 20 depict the projections of Poincaré sections onto the plane (𝜃, 𝜓), so each black point in these 2D

plots represents a simulated orientation of the satellite’s longitudinal axis. For a smaller value of 𝜀 (Fig. 19), the satellite

is in a regular Regime 1. A higher value of 𝜀 transfers the satellite into a chaotic Regime 2, as layers connecting the

upper and lower potential wells appear (Fig. 20), meaning that the satellite’s longitudinal axis moves in such a way that

the phase trajectory passes through both potential wells.
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Fig. 19 Poincaré sections (ℎ = ℎ4 = 800 km, 𝛽 = 30, 𝜀 = 0.01).

Fig. 20 Poincaré sections (ℎ = ℎ4 = 800 km, 𝛽 = 30, 𝜀 = 0.25).

2. Altitude 613 km

In this case, illustrated by Fig. 21, all simulations start in a small potential well around the stable point (1.15; 1.42).

As in the previous case, weak perturbations cannot cause the satellite to leave the well (Regime 1, Fig. 21, a). Stronger

perturbations cause the satellite to move chaotically between the initial well and the two neighboring wells (Regime 2,

Fig. 21, b). As the perturbations increase further, the satellite leaves the area around the above-mentioned wells and

passes into Regime 3, as the transition between the wells is accompanied by full rotations around the precession axis

(Fig. 21, c). In order to illustrate this phenomenon from a slightly different perspective, the Poincaré section points have
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been projected on an imaginary sphere whose center coincides with the center of mass of the satellite (Fig. 22). Here,

again, each black point represents a simulated orientation of the satellite’s longitudinal axis. In the authors’ opinion,

these 3D Poincaré sections, accompanied by the satellite’s velocity vector, as well as by the orbital and local horizontal

planes, provide a better understanding of the complicated motions discussed.

Fig. 21 Poincaré sections (ℎ = ℎ3 = 613 km, 𝛽 = 5): a: 𝜀 = 0.01; b: 𝜀 = 0.1; c: 𝜀 = 0.15.

Fig. 22 3D Poincaré sections (ℎ = ℎ3 = 613 km, 𝛽 = 5, 𝜀 = 0.15). Green arrows: orientations of the satellite’s
longitudinal axis corresponding to the stable critical points. The orbital and local horizontal planes are shown in
gray and black, respectively.

3. Altitude 400 km

Fig. 23 represents the Poincaré sections made by simulations of the phase trajectories starting in one of the wells of

the potential surface, corresponding to the altitude of 400 km. Again, it can be seen that in the case weak perturbations

the satellite stays in the initial potential well (Fig. 23, a). Stronger perturbations transfer the satellite into a chaotic
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Regime 3, since it can perform full rotations about the precession axis, as shown in Figures 23, b and 24.

Fig. 23 Poincaré sections (ℎ = ℎ2 = 400 km, 𝛽 = 100): a: 𝜀 = 1.0; b: 𝜀 = 1.01.

Fig. 24 3D Poincaré sections (ℎ = ℎ2 = 400 km, 𝛽 = 100, 𝜀 = 1.01). Green arrows: orientations of the satellite’s
longitudinal axis corresponding to the stable critical points. The orbital and local horizontal planes are shown in
gray and black, respectively.

4. Altitude 200 km (VLEO)

Fig. 25, a depicts Poincaré sections corresponding to an altitude of 200 km for 𝜀 = 25. It can be seen that, in VLEO,

this level of perturbations is not enough to make the satellite leave the initial potential well. To make the satellite pass to

Regime 3 characterized by full rotations of the longitudinal axis about the velocity vector (Fig. 25, b; Fig. 26) one needs
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to increase the perturbations to 𝜀 = 50. Note that such a high value of 𝜀 is completely realistic since, e.g., by virtue of

Eqs. (41) and (70), for the example satellite in a VLEO orbit with an inclination of 10°, it corresponds to a magnetic

dipole strength 𝑀 = 0.15 A·m2, which is within the capabilities of commercially available nanosatellite magnetorquers.

Fig. 25 Poincaré sections (ℎ = ℎ1 = 200 km, 𝛽 = 25000): a: 𝛿 ≠ 0, 𝜀 = 25; b: 𝛿 ≠ 0, 𝜀 = 50; c: 𝛿 = 0
(aerodynamic damping neglected), 𝜀 = 50.

Fig. 26 3D Poincaré sections (ℎ = ℎ1 = 200 km, 𝛽 = 25000, 𝛿 ≠ 0, 𝜀 = 50). Green arrows: orientations of the
satellite’s longitudinal axis corresponding to the stable critical points. The orbital and local horizontal planes are
shown in gray and black, respectively.

Note that at the left part of Fig. 25, b, where the angle of attack is less than about 𝜋/4, the Poincaré section points,

unlike in all previously discussed cases, do not follow the isolines of the unperturbed dynamic potential. This is due to

the fact that, at VLEO altitudes, for such relatively small angles of attack, the aerodynamic damping torque is noticeably

large. Thus, in this particular case, the proposed separation of the attitude motion does not work equally well in the
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whole (𝜃, 𝜓) space. Fig. 25, c, shows the Poincaré sections for the same set of initial conditions as the one used to plot

Fig. 25, b but with zero aerodynamic damping torque (𝛿 = 0). Note that, in this idealized case, the Poincaré section

points follow the isolines of the unperturbed dynamic potential quite accurately, proving that the peculiar behavior

visible in the left part of Fig. 25, b is indeed due to the presence of damping. This shows that, in VLEO simulations, the

aerodynamic damping torque cannot be neglected.

Thus, the numerical simulations performed in this section demonstrated that the proposed separation of the attitude

motion into unperturbed and perturbed motions is applicable to study the behavior of the aerodynamically stabilized

spinning magnetic satellites, except for the case of small angles of attack and strong perturbations in VLEO. Furthermore,

we have shown that, in the presence of perturbations due to small orbital inclination, chaotic attitude motion is possible.

V. Conclusion
This study considers the near-equatorial spatial attitude motion of an axisymmetric aerodynamically stabilized

magnetic satellite with a more in-depth bifurcation analysis of the critical points of its dynamic potential as well as

chaotic regimes of attitude motion.

The new equations of spatial attitude motion for a passive axisymmetric near-equatorial LEO/VLEO satellite derived

in the study allow taking into account the combined action of three environmental torques, namely, gravitational,

aerodynamic, and magnetic. The proposed separation of the attitude motion into two parts - the unperturbed motion

under potential torques and small perturbations due to the non-potential torques - provides a more intuitive understanding

of the motion under consideration, as the unperturbed motion is shown to have a dynamic potential. This potential

is a function of the two angles that determine the direction of the satellite’s longitudinal axis: 𝜃 and 𝜓. Thus, if the

perturbations are small or absent, the projection of the phase trajectory onto the (𝜃, 𝜓) plane and thus the satellite’s

longitudinal axis will move according to the dynamic potential’s shape, which varies in a complicated way with the

above parameters. This justifies the calculation of the position and stability analysis of the critical points of the potential,

which was also performed in the present study. Since the dynamic potential and consequently the coordinates 𝜃, 𝜓 of the

critical points also depend on the system parameter 𝛽 and on the orbital altitude, several 3D bifurcation diagrams were

made, which allow to study a complex evolution of the critical points of the example satellite in terms of existence and

stability. The analysis of the Poincaré sections resulting from the numerical simulations leads to the conclusion that the

level of perturbations significantly affects the character of the motion. As the perturbations increase, the system begins

to exhibit chaotic behavior.

The results of this study can be used for planning near-equatorial missions involving small passive aerodynamically

stabilized magnetic spacecraft, such as satellites with failed control systems, re-entry capsules, or space debris objects,

since the proposed framework provides a fundamental classical mechanics-based understanding of their behavior and

allows to predict their attitude motion over a wide range of altitudes, which is an indispensable part of any mission
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