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Transport operations in space using tether systems is a most promising technology currently developed in the 

world. A towing of nonfunctional satellites and orbital stages to the boundary of the atmosphere using tethered space 

tug relate to such operations. The paper deals with the motion of a tether system, which includes three elements: a 

passive satellite, a space tug and a viscoelastic tether. Its focus is on the study of attitude motion of the system under 

the action of a thrust tug and a gravitational moment. The aim of the work is to determine the main features of 

motion of the tether system depending on its characteristics. The obtained attitude motion equations show that under 

certain conditions there may be an unstable equilibrium position, which could lead to chaos. In this case, the tether 

system may unpredictably change your position relative to the line of action of the thrust tug, which coincides with 

the local horizontal in this task. We have found a condition which excludes the existence of unstable equilibrium 

position as a source of the chaos. This condition depends on the tether length, mass and thrust of the tug. In this 

paper we detailed study the case when there is instability. The attitude motion is divided into two classes (disturbed 

and undisturbed) for small deflection angles of the tether from the local horizontal. The Poincare sections confirm 

the existence of chaos, as in the case for the small deflection angles of the tether as well as for the general case of the 

motion. The paper provides guidelines for choosing the parameters of the system (the thrust tug, the mass tug, the 

tether length and viscoelastic properties of the tether) depending on the mass of the towed body which do not occur 

chaos. The results of the paper can be useful in the design of the space towing system. 

 

 

I. INTRODUCTION 

 

At present, a great attention is paid to studying the 

possibilities of using tethered systems in many space
1-12

. 

The fundamental paper by Beletsky and Levin
1
  has 

played an important role in providing the basis for the 

study of the tethered system dynamics. The tethered 

systems offer numerous ways of beneficial 

implementation on modern spacecrafts and allow 

performing multiple tasks including such as removal of 

a space debris from Earth orbit to  the earth's surface.
 13-

22
. The towing procedure by a tether in an orbit is a 

relatively new topic. Many aspects of this problem 

remain unexplored. One of them is the chaotic behavior 

of tethered satellite systems (TSS), which includes: a 

space tug, an elastic tether, and a space debris. Chaotic 

motion of a tethered system has been reported for the 

first time in a paper by Misra, et al.
8
. Note that it is 

possible to experience chaotic planar motion in the 

current paper for nominally circular orbits, because of 

the existence of the extensibility of the tether and the 

presence of the thrust, while in the paper
8
, chaos can 

occur only for elliptic orbits or in the presence of both 

pitch and roll. 

 

This study focuses on attitude motion of two bodies 

(a passive satellite and an active space tug) connected 

by viscoelastic tether in a circular orbit under the 

influence of gravitational moment and thrust force. The 

low-thrust tug acts along the tangent to the trajectory in 

the direction opposite to the motion of the two-body 

tethered system. 

We consider separately the influence of these two 

power factors. If the gravitational moment operates on 

the system only, then stable position corresponds to the 

location of the system along the local vertical. On the 

other hand, if we assume only the action of the 

horizontal low-thrust tug then the horizontal position of 

the  two-body tethered system will be stable. 

Clearly, if there are the two power factors, then an 

unstable equilibrium (a saddle) of the two-body tethered 

system can be observed an intermediate position 

between the local vertical and the local horizontal. In 

fact, we are dealing with the elastic connecting tether 

and its pitch oscillations perturb a behavior of the 

system on the whole. The presence of the saddle and the 

periodic perturbations create preconditions for 

occurrence of a chaos. The chaos can lead to 

unpredictable behavior of the system during towing 

space debris. 

The goal is to find the conditions for the existence of 

the chaos and to illustrate its impact on the behavior of 

the two-body tethered system on a circular orbit. 
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II. MATHEMATICAL  MODEL  

 

We consider only planar motion of the tethered 

system in the orbital plane. The tethered system 

includes  an active satellite or (space tug),  a viscoelastic 

tether and a passive satellite an upper stage  (space 

debris) as shown in Fig. 1. The space tug and the space 

debris are modeled as material points which have 

masses 1m   and 2m . The tether is weightless.  Suppose 

that an acceleration of the low-thrust tug 

 1 2/Fw F m m g    is very small, and then the 

attitude motion of the system can be studied assuming 

that the orbit remains circular. Taking into account the 

accepted assumptions the attitude motion equations of 

the tethered system in the orbital plane can be written as 

 

2
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is the gravitational moment, EA  is a stiffness of the 

tether,   is damping ratio of the tether, l  is length of 

the tether, 0l   is length of the unstretched tether,   is 

the gravitational constant of the Earth, r  is orbital 

radius,   is the angle between the local horizontal and 

the tether.  

For the convenience of analysis, the independent 

variable can be changed from time to true anomaly 

t  , in which case   Eq. [1] can be written as 

 

sin sin 2a b     

 
 sin 1

1
a  


    


   [3] 

where     /d d   is derivative with respect to the 

true anomaly,  0 0/l l l    is tether elongation. 

 

 
 

Fig. 1. Space debris and space tug connected by the 

tether 

 

Assuming that the elongation and derivative of the 

elongation , 1    are small, Eq. [3] reduces to  

 

 sin sin 2 , ,a b f             [4] 

 

where   is a small parameter, 

 

 2

1 0/a F m l  , 3b   ,    [5] 

    , , sin 1 1f a             [6] 

 

 

III. THE  EQUILIBRIUM  POSITIONS 

 

For the undisturbed motion  0  , Eq. [4] can be 

further reduced to  

sin sin 2 0a b        [7] 

 

or 

 

 m         

 

where a biharmonic moment takes the form [Fig. 2 (a)] 

 

   sin sin 2m a b         [8] 
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Fig. 2. (a) The biharmonic moment  m  , 

   (b) the potential energy  W  ,  

   (c) the separatrices   /S d d    

   for 5.96055a      

 

Equating to zero the expression [8] leads to two types of 

stationary solutions 

 

0    ,  

arccos
2

a

b


 
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If 

 

2a b   

 

and taking into account the expressions [5] 

 

 2

1 0/ 6a F m l                   [10] 

 

then there are the stable equilibrium position 

 

arccos
2

s

a

b


 
   

 
                 [11] 

 

and the unstable equilibrium position 

 

0u                    [12] 

 

It follows from Eq. [5] that the unstable equilibrium 

could also be for 
u   , however, it is impossible for 

the flexible tether. Note also that if the condition [10]  is 

not satisfied, then the stable position is 0s   and the 

unstable position is absent (Fig. 3). 

 
 

Fig. 3. Bifurcation diagram  

 

 

IV. LONGITUDINAL  OSCILLATIONS  OF  THE 

TETHER   

 

For the new variables    and  0 0/l l l     Eq. 

[2] can be re-written as 
 

 2 22 cos 1a                         [13] 

 

where 

 
3

0 0

EAr

m l


 


                [14] 

 

For small angles of deflection   an approximate 

solution of Eq. [13] takes the form 

 

     0exp sinA C                      [15] 
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where 
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It is obvious that the unstable equilibrium position 

[12] and the small perturbations [6] caused by 

longitudinal oscillations [15] of the tether can lead to 

chaos of the perturbed system [4]. 

 

 

V. POINCARE  SECTIONS 

 

In order to study the influences of the small 

disturbances on the dynamics, the disturbed motion is 

analyzed by constructing Poincare surfaces in the two-

dimensional space  , /d d   . Constructions of the 

Poincare surfaces are based on the numerical integration 

of Eqs. [4] and [13]. All the trajectories shown in Figs. 

4-7 start on abscissa axis 

 

 0 00.4, 0.4 , =0        

      

Figs. 4-6 present the Poincare sections for the case [10] 

 

 2

1 0/ 5.5 2a F m l b    

 

 when there is the unstable equilibrium position (saddle) 

at the point 0u   and there are the stable equilibrium 

positions (saddle) at the points (center) 0.41s   . 

If  

 

 2

1 0/ 6.5 2a F m l b    

 

there is no an unstable equilibrium position and we see 

stable motion relative to the center 0 s  (Fig.4).  

Modeling of the disturbed motion [Eqs. [3] and [13]] 

is performed for the following parameters 

 

,198.34 = 0.08   

where for Dyneema = 0.08  and for Kevlar 49 

= 0.04-0.08
12

. 

 

 

Fig. 4. Poincare sections for disturbed motion for 

= 0.04  and 6.5a   

Fig. 5 shows the Poincare sections for the undisturbed 

system [7]. We see that the intersection of phase 

trajectory does not occur in the vicinity of the saddle 

0u  . 

 

 

Fig. 5. Poincare sections of undisturbed motion 

On the contrary, there is a chaotic intersection for 

the perturbed motion 0   as shown in Fig. 6. Note 

that the chaotic transitions observed in sufficient 

proximity to the saddle 0u  , if the phase paths 

removed from the saddle, we see stable oscillations 

about the centers 0.41s    (Fig. 6). Thus only the 

location near the local horizontal of the tether can be 

considered dangerous  when there is the chaotic motion 

of the tether relative to the local horizontal during 

towing. 
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Fig. 6. Poincare sections of disturbed motion for 

= 0.08  and 5.5a   

 

It became obvious that the elastic oscillations of the 

tether can cause chaos if there is the unstable 

equilibrium [12]. Therefore, the choice of thrust and 

mass of the space tug, and the tether length should be 

such as to satisfy the condition 

 

 2

1 0/ 6a F m l                   [16]

     

when there is not the unstable equilibrium [12]. 

 

VI. CONCLUSION 

 

The attitude motion dynamics of the two-body 

tethered system in circular orbit subject to a gravity 

gradient torque and a thrust force of a space tug has 

been studied. The tethered system is perturbed by 

longitudinal oscillations of a viscoelastic tether. We 

have investigated numerically the attitude motion 

dynamics by using construction of Poincare sections. 

Furthermore, we have found the analytical criteria for 

determining the characteristics of the tethered system in 

which chaos does not exist, ie the tether system 

parameters should be chosen so that the condition [16] 

is satisfied. 

Thus, in considering the dynamics of tethered 

satellite systems we need to take into account 

relationship between the librations and elastic 

oscillations of the tethers. In particular, we have shown 

that chaos may exist during tethered tow of space 

debris. The obtained results can be applied to study the 

possible properties of the space tug and the tether for the 

space debris removal system. 
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