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The field of space tethers has received very much attention in recent decades.  The central advantage of using 

tethers in many of these applications is that very little fuel needs to be consumed. The tethered systems offer 

numerous ways of beneficial implementation on modern spacecrafts and allow to perform multiple tasks including 

such as payload delivery from the Earth orbit. It is the task of payload delivery from an orbit is the closest to wide 

practical realization from all other space tether's tasks. As demonstrated by the mission of YES2 a re-entry capsule 

can be returned to Earth by a tether. Braking of the capsule is achieved using momentum provided from the swinging 

tether. The more a deflection angle of the tether from the local vertical, the more braking effect of the capsule is 

achieved.  

The goal is to find the control law that allows one to increase the angle of deflection of the tether from the local 

vertical, i.e., to increase momentum provided from the swinging tether. This control law can be applied to the final 

phase of the deployment of the tether, both for dynamic so the static deployment. The control law is based on the 

principle of a swing with variable length. Simulations show that the system can be controlled quite well using the 

proposed control law for the tether length rate. The effects of orbit eccentricity and viscoelastic properties of a tether 

were incorporated into the mathematical model to allow more accurate trajectories to be computed. The control 

method allows to reduce a required tether length for deliver capsules on Earth's surface. Using this method, we have 

shown that it is possible to diminish tether length at 5 km as compared with YES2 mission. Results of the numerical 

modeling showed that the control law is effective for the final phase of the tether deployment, when the initial 

deployment occurs by means static or dynamic scheme. 

 

 

I. INTRODUCTION 

 

The advent of tethered satellite systems (TSS) starts 

a new era in space research. The fundamental paper by 

Beletsky and Levin
1
  has played an important role in 

providing the basis for the study of the tethered system 

dynamics. The tethered systems offer numerous ways of 

beneficial implementation on modern spacecrafts and 

allow performing multiple tasks including such as 

payload delivery from the Earth orbit
1-7

. The task of 

payload delivery from an orbit is the closest to wide 

practical realization from all other space tether's tasks. 

There are two essentially different approaches to tether 

deployment at the solution of payload descending 

problem. They are received a title of static and dynamic 

deployment
4
. The first way is termed as "static 

deployment" means slow release of a tether which all 

time is in a neighbourhood of a local vertical. The 

second way is named "dynamic deployment". It means a 

swing of a tether at the expense of Coriolis force acting 

on it and use of it oscillations for additional decreasing 

of payload velocity
4
. Some successful experiments of 

payload delivery by means of tether were executed at 

present time. In 1993 SEDS-1 mission
5
 and in 2007 

YES2 mission were made
6,7

. In first one the static 

deployment was used, and in second - dynamic 

deployment. Dynamic deployment requires the tether 

shorter length than under static deployment. On the 

other hand the dynamic deployment process is very 

complicated
6,7

. It turns out we can get dignity the 

dynamic deployment under static deployment if the 

tether to sway from side to side at the final stage only. It 

is sufficient to use a simple control law for the length 

tether in the final stages of deployment, when the tether 

is fully released, except for a small segment of the tether 

required for control. 

This paper is organized as follows. In Section 1, aim 

of this paper is formulated. In Section 2, a planar motion 

of two material points (mother satellite and reentry 

capsule) connected by an inextensible tether on a 

circular orbit is considered. Section 3 gives averaged 

equation and analytical solution of motion of the 

capsule relative to the mother satellite. In Section 4, the 

effectiveness of the control law of the tether length is 

illustrated by numerical simulation.  

This study focuses on a control strategy for the final 

phase of the deployment of the tether system for 

payload delivery to Earth’s surface, which leads to an 

increase of a deflection angle of a tether from a local 

vertical and hence reduces perigee altitude of a re-entry 

trajectory of a capsule. The control law is based on the 

principle of a swing with variable rope 

 

0l         [1] 
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 where 
0l  is total length of the tether, 0   is a 

constant coefficient. Similar control laws have been 

used in the tasks of gravitational stability of a satellite
8
 

and of a mathematical pendulum
9
. 

 

II. MATHEMATICAL MODEL  

 

We consider only planar motion of the tethered 

system in the orbital plane. The tethered system consists 

of a mother satellite, the capsule, and a viscoelastic 

tether between the two (Fig. 1). The mother satellite and 

the capsule are modeled as material points which have 

masses 
mm  and 

cm respectively, at that 
c mm m . 

 The mother satellite moves on a circular orbit. The 

tether is weightless and tether’s length l  is always 

much smaller than the mother satellite orbital radius 

 0l R . Taking into account the accepted 

assumptions the motion equations of the capsule relative 

to the mother satellite can be written as 

 

 
l

l
      


   

3

0

3 sin cos
R


    ,                 [2] 

2 2 22 cosc c cm l m l m l T      ,  [3] 

0l         [4]  

 

where 3

0R   ,  is the gravitational constant of 

the Earth. 

Assuming that there is the inextensible tether, the 

equations of motion [2]-[4] are simplified to a single 

equation of motion  

 

 
0

3sin cos 2 1 0
l


   


       [5] 

where     /d d   is derivative with respect to 

the true anomaly t  . Then the tether tension force 

is 

 

 2 2 20 0
0

0

2
cosc

g l
T m l

R
   
 

    
 

  [6] 

 

where  0g  is gravitational acceleration of the mother 

satellite (Fig.1). 

 
 

Fig. 1. Swinging release of a capsule from tether 

 

III. AVERAGED  EQUATION  AND  ANALYTICAL 

SOLUTION 

 

In order to find an approximate solution of the 

equation [5], we assume that control coefficient   is 

always much smaller than the tether length 

 

0/ 1l        [7] 

 

By means of the assumption [7], the equation [5] can be 

written as 

 

 2 sin cos 2 1             [8] 

 

where 
2 3  . 

The perturbed equation [8] shows that the tether 

oscillates relative to the position 0   with a slowly 

varying amplitude of the deflection angle 
m . If the 

small parameter equal to zero  00 l const    , then 

the unperturbed equation takes place 

 
2 sin cos 0         [9] 

 

Now we write the energy integral for the equation [9] 

 
2 2

cos2
2 4

W
 



                  [10] 

 

Taking into account the equation [8], we obtain the 

derivative of the energy integral 
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  22 1W        

 

and averaging of this equation over the period of the 

variable   

 

T d                    [11] 

 

we get 

 

  22
1W d

T


                           [12] 

 

Solving the equation [10] with respect to 

 

 
2

2 cos2
4

W


 
 

    
 

 

 

the equations [12] and  [11] can be written as 

 

2

0

8
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4

m

W W d
T





 
 

 
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 
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2
0

4

2 cos2
4

m d
T d

W










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 
 

 

The integrals in the right-hand sides of these equations 

are elliptic integrals. Change of variable 

 

sin sink     sin mk    

 

converts these integrals to the complete elliptic integrals 

of the first and second kind
10 

 

 
 

2

2 2
0

,
1 sin

d
K k

k











 

   
2

2 2

0

1 sinE k k d



    

 

This finally leads to the following equations 

 

 

 
 2 22 1

E k
W k

K k


 
    

 

,  

 
4

T K k


                     [13] 

 

From the equation [10] it follows that 

 

    2, , 0 2sin 1m mW W          

22 1 2 1k x                    [14] 

 

where 2 2sin mx k    is a new variable. 

The variable substitution [14] in the equation [13] gives 

 

 
 

 
8

1
E x

x x
K x


 
    
 
 

  

   

This equation is approximated by a cubic polynomial 

 

 2 2 16
8

dx
x x x

d




                    [15] 

 

Separating the variables in [15] and integrating it, we 

get   

 

     04 ln 1a a a a x       


 

     
2

2
0

sin

sin

ln 1 2ln
m

m

a a a x x




    


     [16] 

 

where  0 017, m ma      

 

 

IV. THE  EFFECTIVENESS  OF  THE CONTROL 

LAW 

 

To evaluate the effectiveness of the control law [1] 

we use the formula determining a change in altitude in 

the perigee of the capsule after the separation from the 

tether in the point A (Fig.1). It is given by
1 

 

 
2

0 022

A A

p

A A

R V
h R R R

R V
    


 

 

where 
pR  is a perigee height of a re-entry trajectory, 

0A AR R l  ,  0 1A A AV R l     
, as shown in Fig. 1. 

We note that for the YES2 mission the change in 

altitude was 

 

2 330YESh km    

 

when the amplitude 
m 40deg  , the tether length  

 

30l km and
0 6645R km

7  
 

 

To illustrate the performance of the proposed 

method, consider an application of the law [1] and 
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compare with the mission YES2 mission
7
. The 

simulation results are depicted in Figs. 2-4. Fig. 2 shows 

the true anomaly history of the tether libration angle  . 

We see that after 5 complete librations the value of the 

librations the amplitude of the tether librations is almost 

twice the value of the angle (40 deg) and reaches 74.5 

deg. After which the capsule is separated from the tether 

when the tether reaches to the local vertical. During this 

time the Mother satellite makes approximately 4.2 

revolutions around the Earth. Fig. 3a depicts the true 

anomaly history of the tether length. We note that the 

tether length lies in the range from 24 km to 25.3 km. 

Fig. 3b shows that the tether tension less than 2 N and 

the tether always remains stretched. Note that the 

simulation is performed for 750m  . 
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Fig. 2. True anomaly history of the tether libration angle 
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Fig. 3. True anomaly histories of the tether length  
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Fig.4. True anomaly histories of the tether tension 

 

For this numerical experiment the change in altitude 

equals  

 

335h km    

 

 

V. CONCLUSION 

 

It is important to remember that all artwork, 

captions, figures, graphs and tables will be reproduced 

exactly The principle of variable-length swings in the 

final phase of the tether deployment has been allowed to 

reach any value of the amplitude of the tether oscillation 

of the range  0, / 2ma  . The obtained analytical 

solution shows the relationship between the parameters 

of the tether system, the control law and the amplitude 

of the tether oscillation 
m . The control method allows 

reducing a required tether length for deliver capsules on 

Earth's surface. Using this method, we have shown that 

it is possible to diminish tether length at 5 km as 

compared with YES2 mission. Results of the numerical 

modeling showed that the control law is effective for the 

final phase of the tether deployment. 
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