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Abstract 

Among proposed applications of tethers in space, tether-assisted payload deorbiting projects are closest to 

the wide practical implementation. Three experiments were carried out successfully to date. The idea is to avoid the 

use of jet engines to generate a brake pulse, which transfers the payload on the descent orbit. The necessary reduction 

in velocity can be obtained through the use of features of the orbital motion of the space tether systems. 

Development of effective tether control methods are of great scientific and technological interest. The majority of 

research concerns the descent of a payload from a circular orbit. The aim of this research is development of an 

effective method of the tether control in tether-assisted payload deorbiting mission in the case of elliptical orbit of 

small eccentricity. 

The plane motion of the space tether system, which consists of a satellite, massless tether and payload, is 

considered. It is supposed that the center of mass of the system moves on a Keplerian orbit with small eccentricity. 

The tether length control law, which is based on a swing principle, is proposed. The equation of the controlled 

relative motion of the tether around the center of mass is obtained. The angle of the true anomaly is used as an 

independent variable. It is shown that in the vicinity of the local vertical a stable limit cycle with period 2 pi may 

exists for certain values of the coefficient in the control law. An approximate analytical equation of this cycle is 

obtained. It is shown that considered control law can transfer the system into rotation mode, which is more preferable 

for the tasks of payload deorbit, as it provides a greater reduction in the payload velocity. The optimal value of the 

control coefficient and the moment of payload separation, which ensure transfer of the payload into the orbit with a 

minimum altitude of the perigee, are founded numerically for the case of small eccentricity. The proposed control 

law can be used to develop new deorbiting systems. 
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1. Introduction 

Space tethered systems have attracted the attention 

of researchers since the beginning of the space age. 

Their large extent, variable configuration, and the 

possibility of interaction with the Earth electromagnetic 

field create prerequisites for the wide use of space 

tethers for solving various transport tasks in space. 

Detailed reviews of various projects and ways of space 

tethered systems application are given in the works [1-

3]. Among proposed applications of tethers in space, 

tether-assisted payload deorbiting projects are closest to 

the wide practical implementation. Three experiments 

were carried out successfully to date: SEDS-1 in 1993, 

SEDS-2 in 1994, and YES2 in 2007 [4]. These 

experiments proved the possibility of removing a 

payload from orbit by space tether without the use of jet 

fuel. Delivery of a payload to the Earth surface is the 

final stage of a large number of space missions, thus the 

development of cheap and environmentally friendly 

technology of payload deorbit is relevant. 

Any mission of payload deorbit can be divided into 

three stages: braking to transfer from the initial orbit to 

breaking orbit, flight to the boundary of the atmosphere, 

descent into the atmosphere. Usually the transfer from 

the initial orbit is carried out by jet engines. However, 

this stage can be realized by the means of a space tether. 

There are two main tether length control schemes that 

are actively discussed in the scientific literature and can 

be used for the tether-assisted payload descent: “static” 

and “dynamic” [5, 6]. The static scheme implies the 

slow deployment of the tether along the local vertical. 

The transfer of the payload to the braking  orbit is due to 

the fact that the payload descends to a point where its 

velocity after separation from the tether is insufficient 

for existence  in a near-earth orbit. The dynamic scheme 

is based on the use of the Coriolis force to deflect the 

tether from the local vertical in the direction of the 

orbital flight. The absolute velocity of the payload is 

reduced by the subsequent tether return oscillation. Like 

a mathematical pendulum, the greater the maximum 
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tether deviation angle from the local vertical, the greater 

reduction in the payload absolute velocity can be 

achieved. To increase the tether oscillations amplitude, 

the swing principle can be applied [7].  

The majority of research devoted to the tether-

assisted return missions concerns the descent of a 

payload from a circular orbit [5-9]. This study focuses 

on tethered return from an elliptical orbit of small 

eccentricity. In contrast to the case of a circular orbit, 

the vertical position is not an equilibrium state in the 

case of elliptical orbit. Moreover, with the growth of 

eccentricity, the motion of the space tethered system 

becomes chaotic [10]. Another difference from the case 

of a circular orbit is that the separation of the payload 

when it passes the local vertical does not guarantee its 

transfer into orbit with a minimum radius of perigee. An 

additional effort should be made to determine the 

optimum separation moment [11]. 

The aim of this research is development of an 

effective method of the tether control in tether-assisted 

payload deorbiting mission in the case of elliptical orbit 

of small eccentricity. As a criterion of optimality, the 

radius of the perigee of the orbit, into which the payload 

passes after separation from the tether, is used. 

 

2. Mathematical models and methods  

2.1 Equations of the motion 

Considered mechanical system consists of a satellite, 

tether and payload. The satellite is equipped with a 

winch that is capable of unwinding and winding the 

tether according to a predefined law. The satellite and 

payload are material points. The centre of mass of the 

systems moves along the unperturbed Keplerian orbit. 

Its position is expressed through the distance between 

the centre of Earth and the satellite r  and the true 

anomaly angle   (Fig. 1). The motion of the considered 

system can be described by the equations [7] 
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Here ( )  is the derivative with respect to  ,   is the 

angle between the tether and local vertical (Fig. 1), l  is 

the tether length, e  is the eccentricity, p  is the orbital 

parameter,    is the gravitational constant of the Earth. 

It is assumed that the tether length changes in 

accordance with the control law 

0l L   ,   (3) 

where  is a constant control coefficient, 
0L  is the 

tether length for 0  . It is supposed that 
0L   and 

small parameter   can be introduced as 

 
Fig. 1. Space tethered system 
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
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The right side of equation (1) contains the term 
12( 1)l l    which can be expanded into a series with 

respect to the small parameter  . After retaining the 

term of the order  , equation (1) takes form 
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In the case of small eccentricity, linearization of 

equation (5) by e  yields  
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Equation (6) can be expanded in a power series around 

the point 0   
3
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Here 1h e  . Equation (7) is the perturbed Duffing 

equation. The first term on the right side of (7) is the 

small disturbance caused by the controlled tether length 

change. The second term is the disturbance due to the 

small ellipticity of the orbit. 

It should be noted that some constrains should be 

performed during controlled motion. Firstly, the tether 

length is limited  

min maxL l L  .   (8) 

Secondly, the rate of the tether deployment/retrieval 

should not exceed the allowable value  

max| |l V .  (9)  

 

2.2 Nature of the tether length control 

Proposed control (3) is based on the swing principle. 

Let us consider its physical nature. The differentiation 

of the equation (3) gives 

l    .   (10) 

Let us suppose that coefficient   is positive. According 

to (3) and (10) the tether length increases when the 

angle  decreases (the tether rotates clockwise Fig. 2a), 

and the tether length decreases when the angle   
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increases (the tether rotates counter-clockwise Fig. 2b). 

The motion of the payload can be considered in the 

rotating Hill coordinate frame Cxy  (Fig. 1). Moving in 

the rotating coordinate frame, the payload experiences 

the influence of the Coriolis force 2C rm  F θ V  (Fig. 

2). Here m  is the payload mass, 
rV  is the relative 

velocity of the payload. The use of the control law (3) 

leads to the fact that the direction of the Coriolis force 

coincides with the direction of the tether rotation (Fig. 

2). Thus, this force creates a torque relative point C  

tending to increase the module of  . In the case of a 

negative control coefficient  ,  the Coriolis force 

creates a torque tending to reduce the amplitude of 

 angle  oscillations. 

 

 

 
Fig. 2. Influence of Coriolis force 

 

Provide sufficient detail to allow the work to be 

reproduced. Methods already published should be 

indicated by a reference: only relevant modifications 

should be described. 

 

2.3 Limit cycle 

Numerical studies have shown that, there is a stable 

limit cycle of  2  period near the point 0  , 0   

when 0  . A limit cycle is an isolated closed 

trajectory. Neighbouring trajectories spiral toward stable 

limit cycle. Figure 3 demonstrates stable limit cycles for 

0.06    and various eccentricity values. Figure 4 

shows the curves ( )   obtained for different initial 

conditions and 0.1e  . It can be seen that the curves 

approach the limit cycle. 

The Poincare’s method can be used for obtaining 

periodic analytical solution of equation (7). To find 2 -

periodic limit cycle let us write solution ( )   in the 

form of a power series of the small parameter 

 
Fig. 3. Limit cycles for various eccentricity values 

 

 
Fig. 4. Tether deflection angle evolution 

( 0.1e  , 0.06   ) 
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where ( )i   are some  2 - periodic functions. After 

substitution solution (11) into (7) and equating terms of 
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result, the system of equations can be obtained. The first 

equation on this system  
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Equations (12) can be solved sequentially. The 

unknown integration constants should be selected so 

that the periods of solutions are equal to 2 . 
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The required accuracy of the analytical solution (11) 

can be achieved by increasing the number of terms in 

this expansion. Figure 5 shows the results of numerical 

integration and approximate analytical solutions that 

take into account the different number of terms in the 

expansion. The following designation is used for the 

approximate analytical solutions 

0

( ) ( )
k

k i

i

i

e   


 . 

Graphs of the dependences of the deviations of 

approximate analytical solutions from the numerical 

solution  
k

k     

are shown in Fig. 6. Numerical studies have shown that 

the limit cycle (11) is stable when 0  , and it is 

unstable when 0  . 

 

 
Fig. 5. Comparison of approximate analytical solutions 

( 0.1e  , 0.06   ) 

 

 
Fig. 6. Deviations of approximate analytical solutions 

from the numerical solution ( 0.1e  , 0.06   ) 

 

2.4 Selection scheme of optimal control parameters  

When using the control law (3), three parameters 

should be defined: control coefficient  , the moment of 

the control beginning 0 , and the moment of the 

payload separation from the tether s . It is assumed that 

until the moment 0  the motion occurs over a stable 

limit cycle, then the control coefficient   reverses the 

sign, and the swinging the tether starts. As a criterion of 

optimality, the radius of the perigee of the orbit, into 

which the payload passes after separation from the 

tether, is used [12] 
2H

r
f







,   (14) 
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where 
B B B Bh x y y x    is the massless angular 

momentum,  2 2

2f h c   is the module of the 

Laplace-Runge-Lenz vector, 2 2

2 2

2
B B

B B

c x y
x y


  


 is 

the total energy per unit mass, 
Bx  and 

By  are the 

coordinates of the point B in the inertial coordinate 

frame OXY (Fig. 1) 
1cos cos( )( )B A A Bx r m l m m       , 

1sin sin( )( )B A A By r m l m m       . 

Here 
Am  and 

Bm  are the masses of the satellite and the 

payload.  

The search for optimal control parameters is a 

difficult task, because the function 0( , , )sr      

contains a large number of local minima. To find the 

optimal values the series of numerical simulations of 

equations (1), (2) with random values of  and 
0  

should be conducted. The values of the angle 
s , for 

which at least one of the constraints (8), (9) is not 

satisfied, are excluded from consideration. Then the 

smallest r  value should be chosen from the set of local 

minima.  The calculation of the controlled motion of the 

system was performed in Matlab. 

 

3. Results of numerical simulations 

As an example, YES2 mission that was studied in 

detail in [7, 14] will be considered. It is supposed that 

the center of mass of the space tether system moves in 

an elliptical orbit with following parameters: the 

eccentricity is 0.0027e  , the perigee attitude is 249 

km, the appogee attitude is 285 km. The masses of the 

satellite and the payload are  6530kgAm  , 

12kgBm  . It is assumed that the tether length lies 

within 
min 0.5kmL   and  

max 31kmL  , and  the 

maximum rate of the tether deployment/retrieval  is 

max 15m/sV  . In [14] it was shown that for a tether of 

31km length application of dynamic deployment allows 

to reduce the payload perigee height by 330 km. The 

swing principle makes it possible to achieve the same 

reduction in altitude with a tether length of 25.3 km [7]. 

Let us show that considered control law (3) can transfer 

the system into rotation mode, which is more preferable, 

as it provides a greater reduction in the payload velocity 

and allows achieving the same reduction in payload 

perigee altitude with a tether of smaller length. We will 

use described in section 2.4 scheme and step-by-step 

method to find optimal control parameters. It is 

supposed that initially the space tether system moves on 

the limit cycle (11) with control coefficient 0  . 

Numerical calculations have shown that required 

decrease in perigee height of 330 km can be achieved 

with a tether of 12.254 km length. This length is 60.47% 

smaller than in the case of the dynamic YES2 law [14]. 

The following control parameters were used: 

449.225m  , 4

0 2 10   , 229.14s  . Swinging 

the tether and the subsequent transition into rotation are 

observed. The system manages to make three turns 

around its center of mass until the moment of the 

payload separation (Fig 7). Fig. 8 shows the dependence 

of the perigee radius of the orbit on which the payload 

passes in the case of separation from the tether at the 

moment
s . Fig. 9 demonstrates  the change in the tether 

length during control. Points A-D correspond to local 

minima in Fig. 8. 

The results of the numerical calculation show that 

the swing principle allows to transfer the space tethered 

system into rotation mode in the case of an orbit with a 

small eccentricity. The payload separation from the 

rotational mode proves to be more effective for the 

problem of the payload descent than in the case of 

separation from the oscillation mode. This result agrees 

well with the known works on moment-exchange 

tethers [1-4]. 

 

 

 
Fig. 7. Phase portrait of equation (1) with control (3) 

 

 
Fig. 8. Dependence of the perigee radius on s  
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Fig. 9. Dependence of the tether length on 

s  

 

It should be noted that the payload orbit perigee 

radius (12) is one of the possible optimality criterion. 

For real mission planning the set of thermal and 

mechanical constraints for the re-entry capsule should 

be taken into consideration [11], but in order to show 

the effectiveness of the considered control scheme, 

criterion (12) is sufficient. 

 

4. Conclusions  

The plane motion of the space tether system has 

been considered in this study. The tether length control 

law, which is based on a swing principle, was proposed. 

It was shown that in the vicinity of the local vertical a 

stable limit cycle with period 2  may exists for certain 

values of the coefficient in the control law. An 

approximate analytical equation of this cycle was 

obtained. It was shown that considered control law can 

transfer the system into rotation mode, which is more 

preferable for the tasks of payload deorbit, as it provides 

a greater reduction in the payload velocity. The optimal 

value of the control coefficient and the moment of 

payload separation, which ensure transfer of the payload 

into the orbit with a minimum altitude of the perigee, 

was founded numerically for the case of small 

eccentricity. The proposed control law can be used to 

develop new deorbiting systems. 
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