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Abstract. The relative attitude motion is studied between two charge controlled geosynchronous bodies being held 

at a predetermined along-track configuration. While body one, the space tug, is modeled with a spherical shape, the 

2nd body, the large space debris, is assumed to be cylindrical and tumbling. This scenario allows for simultaneous 

repositioning and detumbling of both large and small GEO space objects. Detumbling is critical for orbital servicing 

where rotational motions above one degree per second prohibit current docking solutions. This paper focuses on 

challenges particular to a pusher configuration where the debris and tug have nominally the same charge. A Multi-

Sphere Method approach is investigated to model the electrostatic forces and torques. Using a first-order expansion 

new electrostatic torque predictions are incorporated into the detumble feedback control component. Multiple even 

and odd control solutions are hypothesized and their linearized stability properties discussed. Only in-plane relative 

motion of the tug and debris are considered to focus on planar relative heading control and the impact of the MSM 

modeling within the control formulation. Numerical simulations illustrate how the parameters of the bodies and the 

control impact the stability of the system. 

Keywords 

Space debris, Space tug, Coulomb force, Relative motion, Control, Stabilization 

 

Nomenclature 

1
m   = mass of the tug, kg  

2
m   = mass of the debris, kg  

J  = moment of inertia of the space debris, kg m
2
 

9 2 28.99 10 /ck Nm C  = Coulomb’s constant 

1C xy = Local-Vertical-Local-Horizontal (LVLH) coordinate 

  = pitch attitude angle 

s  = stable equilibrium position 

u  = unstable equilibrium position 

       =    angle between local horizontal line of the tug and the line connecting the tug and debris, rad 

d   =  position vector of the debris relative to the space tug, m   

| |d  d =  distance between the space tug and debris, m  

ir     =   position vector of the space tug ( 1i  ) and debris ( 2i  ), m  

im  = mass of the space tug ( 1i  ) and debris ( 2i  ), kg \ 

n   =   mean motion of the space tug, 1/ s   

xe   = unit vector of the local vertical at the space tug position, m  

ye   =   unit vector of the local horizontal at the space tug position, m  

iF    =  net force acting on the space tug ( 1i  ) and debris ( 2i  ), N  

1,2F  = Coulomb force acting on the debris, N  

2,1F  =  Coulomb force acting on the space tug, N  

iD   =  sum of the perturbation forces acting on the space tug ( 1i  ) and debris ( 2i  ), N  



 

,x yU U =  projections of the control force, N  

,x yu u   = projections of the accelerations provided by the control forces xU and 
yU , 

2/m s  

P        = is the tug's thrust force vector, N  

pa     =  acceleration of the space tug provided by the thrust force P , 
2/m s  

c     = feedback control coefficient ,
2/m s  

c   = feedback control coefficient, /m s  

vc     = feedback control coefficient 1/ s  

iq   = craft charges ( 1i   for the space tug and 2i   for the debris), C  

ek    =  Coulomb constant, 
2 2· ·N m C

 

 

 

I. Introduction 
Space debris is a growing concern for both Leo Earth Orbit (LEO) and Geosynchronous Orbit (GEO) 

regimes.[1-3]. In particular, the comprehensive study in Reference 2 discusses how zones within the GEO regime 

are becoming very congested, rivaling the worst LEO debris concerns.  The defunct GEO satellites tend to be very 

large, often reaching beyond 5-10 meter in size, as well as rotating and tumbling.[4]    The act of docking onto such 

large and tumbling space objects is very challenging, and as a result novel touchless debris removal or despinning 

solutions are being explored.  The ion-shepherd method uses the ion engine exhaust to push and/or despin a 

satellite[5], while the laser ablation method uses the debris’ own mass as a thruster fuel source.[6] A promising 

touchless and low-power solution is the electrostatic tractor.[7]. Here active charge emission is used to both charge 

the tug or servicer vehicle as well as the debris object.  While the original concept uses an electron gun to charge the 

tug positive and debris negative, creating an attractive electrostatic tractor force, with auxiliary charge emission on 

the tug it is also possible to charge both servicer and debris to the same potential to create a repulsive force.[8,9]  

Most of the control research using the electrostatic tractor considers a pulling configuration to move GEO 

objects.[10]. Further, modulated electrostatic tractor implementations are studies to detumble a space object without 

physical touch.[11] This will enable orbital servicing and docking missions to first remove a large amount of the 

rotational kinetic energy before physically docking and engaging with a satellite. 

 

The aim of this paper is to investigate the control of the space tug and debris for the removal and detumbling of 

the space debris or defunct satellite using electrostatic forces.  The goal is to provide a stable relative motion of the 

tug and the debris both in terms of translation and rotation. With the spacecraft and debris nominally charged with 

the same polarity to consider a pusher configuration, a feedback control method using both the thrusters for station-

keeping and electrostatic charge modulation of the space tug for pushing and detumbling is considered. The 

feedback control laws aligns the tug-debris direction with the tug along-track orbit axis and maintains a nominally 

constant distance between the charged tug and debris, all while stabilizing the attitude motion of the debris.  For the 

scope of this paper only in-plane motion of the tug and debris are considered. The tug is assumed as a sphere with a 

homogenous potential and the debris as a rigid conducting cylindrical body that have nominal electric charges of the 

same sign and the repulsive electrostatic forces act between the tug and the debris. Further, the tug has two thrusters: 

the main thruster, which provides the acceleration of the whole system for the disposal of the debris to a disposal 

orbit and the control thruster, which ensures the required position of the tug relative to the debris. This scenario 

covers general repositioning of both large and small GEO satellites, as well as moving large space debris to a 

disposal orbit which lies to 200-250 km above GEO orbit. 

 

 

II. Accurate Electrostatic Torque Approximations  

A. Multi-Sphere Model Overview 
Modeling the electrostatic forces and torques between two three-dimensional conducting shapes is readily solved 

these days using numerical finite element programs.   However, the time to evaluate a single solution can range from 

a minute to 10's of minutes depending on the complexity of the scenario.  To model the dynamics of two 

neighboring charged space objects these force evaluation times are orders of magnitude too large to be practical.  

Consider the Geosynchronous Earth Orbit (GEO) regime where natural charging can reach 10's of kilo-Volts with 

particular space weather conditions. [12-16] To simulate the rotational motion of two charged GEO using a 4
th

 order 

Runge-Kutta integration method and a 0.1s time step, assuming a conservative 60 seconds per force evaluation, 

would require a 2400 days of computation time.  Faster numerical methods are required to approximate the 

electrostatic forces and torques acting on a system of charged objects.   The Multi-Sphere Method (MSM) is a 

lower-fidelity electrostatic modeling technique that can be evaluated quickly enough for faster-than-realtime 

applications. [17-18] 

 

With MSM the conducting spacecraft charge distribution is modeled through a series of spheres.  The optimal 

locations of these spheres are found through either a force and torque,[19] or an E-field matching technique.[20] 



Figure 1 illustrates a cylindrical rocket body being modeled through a set of three internal spheres.  This MSM 

technique is called the Volume MSM or VMSM method.    An alternate MSM technique, called the Surface MSM 

or SMSM method, populates the object's surface with a series of spheres.[18] The SMSM method can yield more 

accurate approximates then the VMSM models, but the number of spheres makes any analytical formulations in-

practical.  Assuming a 2-3 craft radii separation, either method can yield accuracies that are better than 1-2%.    

 

MSM is an elastance-based method for predicting the force and torque on conductors.[21] With either the 

VMSM or the SMSM technique the mathematical formulation of the E-forces and torques is the same.  Assume the 

objects are represented through    conducting spheres whose optimal body-fixed locations and sizes have been 

determined apriori.  The      charge matrix,              , which contains the charge on each sphere of 

a MSM model, is related to the      sphere voltage matrix               through:[17] 
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where             is the Coulomb constant, and the       matrix 
 

  
   is the Position Dependent 

Capacitance (PDC) matrix.  The inverse of    is the elastance matrix   which is readily formulated as 
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where    are the individual MSM sphere radii and      is the relative distance between spheres   and  .  By knowing 

the potential    on each sphere, Eqs. (1) and (2) allow for the MSM charges    to be computed.  The computational 

speed, or analytical complexity of the charge formulation, is directly dependent on how many MSM spheres are 

used.  The VMSM approach yields good approximations with a small number of spheres for very rapid numerical 

force evaluations, and some analytical insight if only 2-3 spheres are used.  The SMSM model provides enhanced 

fidelity as it can better model non-homogenous charge distributions if the objects are very close to each other. 

However, instead of using 2-3 VMSM spheres, the SMSM approach uses 10's or 100's of spheres.  As the elastance 

matrix inverse is an    order evaluation, the SMSM modeling is orders of magnitude slower than VMSM solution, 

but provides noticeable accuracy improvements if the craft are separated less than 2-3 craft radii.   

 

To evaluate the general forces and torques, the Coulomb interactions are summed up across all the MSM spheres 

through 
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Here the Debye shield of the local plasma environment is ignored as the separation distance considered, 10-25 

meters, is significantly less than the average minimum GEO Debye length of 200 meters.   

 

Next, the specific scenario is considered there the MSM modeling is used for a debris-tug scenario as illustrated in 

Figure 1.  Here the tug is modeled through a single sphere    and the cylindrical debris is modeled through three 

spheres   ,   and   .  The conducting debris object has the potential    and the conducting spherical tug has the 

potential   .  The charge voltage relationship is now partitioned as 
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where the elastance matrix partitions are defined as 
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        (6c) 

 

Note that the inverse of    and    yield the self-capacitance matrix of the debris and tug respectively, while the 

mutual capacitance between them is the      partition.  Using the Schur complement matrix decomposition[22] to 

express the elastance matrix inverse allows Eq. (5) to be solved for the charges using: 
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where 

 

             
      

        (8) 

 

and  

 

                  (9) 

 

The mutual elastance component      accounts for the fact that two neighboring charged objects will impact each 

other’s charge to voltage relationship.  However, if the separation distance grows sufficiently large, this influence 

becomes negligible.  If MSM is used for a feedback control development, then the charge evaluations in Eq. (7) 

rendered much more complex if this mutual capacitance term is included.  If      can be assumed to be small, then 

the charge equations in Eq. (7) simplify to the two isolated body solutions 
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For the particular cylinder (debris) and sphere (tug) scenario illustrated in Figure 1, the total electrostatic force onto 

the cylinder is then given by [17,19] 
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Fig. 1 Multi-Sphere Illustration of a Tumbling Cylinder Neighboring a Spherical Tug 

 



Local-Vertical-Local-Horizontal (LVLH) coordinate frame is used to describe relative motion of two spacecraft. 

The origin of the LVLH frame is the center of mass of the space tug 1C . Axis 1C x  is aligned with the local vertical 

line and 1C y  axis is aligned with the local horizontal line (Fig. 1).  We assume that the distance between the bodies 

is varied  varbr d   according to the motion equations of the debris and the tug.  

 

B. Planar Rotational Equations of Motion 

Attitude motion. To describe the motion of the debris relative to its own mass center 2C , we use the angular 

momentum theorem   

  E G

d
J f L L

dt
     

 
      (13) 

Here the electrostatic torque is 
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where  0 ,x y zJ J J J J    are the moments of inertia of the cylindrical debris object. 

The electrostatic torque in Eq. (14) is non-trivial due to the complexity of the determining Coulomb forces in Eq. 

(11) using the capacitance relation in Eq. (5) and (6), and to obtain analytical solutions the symbolic manipulator 

MATHEMATICA [23] is used. After some additional transformations the electrostatic torque in Eq.  (14)  is written 

as 
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where 2 1

2 2d x y  r r is the separation distance vector between the objects,   is the cylinder orientation 

angle( Fig.1), 1  is the controlled voltages of the tug,   is the constant voltages of the debris. 

In equation (16) an unimportant assumption is used where 2, 2, 2b a RR R   and 2R  is radius of the cylinder 2 

(debris). 

 

Motion of the system relative to the inertial frame.  At first the motion of the space tug and debris is considered 

in the Earth-centered inertial (ECI) frame OXYZ . The origin of OXYZ  frame is in the center of the Earth. The 

OXY plane coincides with the Earth's equatorial plane, the OX  axis is aligned with the equinox, the OZ  axis 

extends through the North Pole. The position of the space tug and space debris described by the column vectors 

1 1 1[ , ]Tx yr and 2 2 2[ , ]Tx yr respectively. The inertial equations of motion of the space tug and debris relative 

to OXYZ frame are: 
2

2 3
, 1,2i i
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i
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r r
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where the time derivatives are inertial derivatives of the vectors, im   1,2i   are masses of the tug  1i   and 

debris  2i   objects, iF    1,2i   are the net forces acting on the space tug  1i   and debris  2i   

1 1 1( )x x y y EU P U    F e e F N      (20) 

2 2 2E F F N         (21) 

where iN  is the net vector of other disturbance forces acting on the tug  1i   and the debris  2i   which 

include gravity perturbations of the Sun and the Moon, solar pressure and perturbations due to a non-spherical 

Earth's gravity. constP   is the nominally constant station-keeping thrust force of the space tug. This thrust P  is 

assumed to be aligned with the local horizontal axis of the space tug.  



 

The Coulomb forces acting between the objects are defined by Eq. (11) 

 1 2 2 2 2E E a b c    F F F F F      (22) 

These equations are non-trivial due to the complexity of the determining Coulomb forces in Eq. (11) through the 

elastance and capacitance matrices in Eqs. (5) and (6).  To obtain analytical force solutions the symbolic 

manipulator MATHEMATICA [23] is used. Using Eq. (14) and after performing some additional transformations 

the Coulomb force in Eq. (22) is written as 
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Further, the variable  arctan /x y    is the angle between local horizontal line of the tug and the line 

connecting the tug and debris. 

 

The control thrusters of the space tug can produce thrust along the local horizontal and local vertical axes 

x x y yU U U e e       (24) 

The feedback control law of the space tug motion is developed using Eq. (19). However, because during the active 

debris removal it is necessary to maintain a predetermined relative motion of two bodies, maintaining a balance 

between the force P  and the Coulomb interaction force, there is a good reason to use the equations of the relative 

motion. This is the subject of the next subsection. Eq. (19) is used to validate the obtained feedback control law. 

 

Motion of the system in Euler-Hill frame.  

Let us consider the motion of the debris relative to the Local-Vertical-Local-Horizontal or Euler-Hill (LVLH) frame 

1C xy   [24] (Fig. 1) with the chief (tug) is in a circular orbit.  This is a good assumption for GEO debris object 

tugging.  The rectilinear LVLH frame is attached to the space tug. Position of the debris relative to the space tug is 

described by the column vector 

x

y

 
  
 

d        (25) 

The LVLH frame is a non-inertial frame, so the equations of the debris relative to the space tug contains the terms 

associated with the motion of the LVLH frame relative to the Earth. The equation has the classical form [25] 
22 3

2

x

y

x ny n x a

y nx a

  

 
      (26) 

where n  is the orbital rate of the space tug which is changed under the action of the tug's thrust. The change of the 

orbital rate n  is approximated as  

 

1 2

1P
n

m m r



       (27) 

where r is the distance from the Earth center to the center of mass of the system. The rate of change of n  is close to 

0 due to small value of the thrust force P , so the value of n  is neglected [25]. For example, electric thrusters have 

thrust output in the micro- to milli-Newton range. For 20P  mN and 1 2 5000m m  kg  

13 220 mN 1
· 10 s

5000 kg 35786 km
n        (28) 

This value is several orders of magnitude smaller than the magnitude of 
2 95·10n  1/s

2
 presented in the Eqs. 

(26).  



 

The right side of the Eq. 26 includes projections of the acceleration produced by the main thruster and control 

thrusters of the tug and by the electrostatic force 
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1 2
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   
       

  
a F a u u     (29) 

where Pa  is the acceleration of the space tug provided by the main engine thrust P  

1

00

1
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p

P

am

  
    

   
a       (30) 

,x yu u are the accelerations created by the control engines thrust ,x yU U  

1 1/ , /x x y yu U m u U m       (31) 

Next the relative equations of motion are rewritten using polar coordinates   and d that are more suitable to use 

during the analysis of relative motion. After substituting sin , cosx d y d   and their derivatives into the 

relative equations of motion leads to 

 2

1, 1,

*

3 1
2 sin 2 ( )sin

1
cos cos sin

2
p y x E x E y

n
d n a u u

d d
F

m d
F


     


                  (32) 

 2 2 2

1, 1,

*

(3 sin 2 ) ( )cos sin sin co
1

sy p x E x E yd d n n u a F Fu
m

                  (33) 

where 
* 1 2 1 2/ ( )m m m m m   is the reduced mass of the system. 

 

 

III. Simplified Nonlinear Model (SNM) 

 
Reference [26] shows how to steer a tug for sustainable motion of the system, considering the debris as a simple 

point-charge model. Now considering the debris as a solid body, an electrostatic tug charge feedback control 

algorithm should be found to realize a stable debris motion relative to the line connecting mass centers the tug and 

the debris. The very complicated form of the formulas for the electrostatic torque in Eq. (16) and forces in Eq. (23) 

make this a challenging task. The following assumptions are used to simplify these formulas and hence the 

equations of motion described in Eqs. (13), (32) and (33). So, assume the length l of the cylinder body 2 (Fig.1) is 

substantially less than the distance d between the centers of mass of two bodies  

l

d
        (34) 

Then the Coulomb torque in Eq. (16) and forces in Eq. (23) are given by the following approximate formulas: 
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Note that in these formulas it is possible to specify a different degree of expansion in  if required to account for 

second or higher order terms. In Eq. (13) the gravity gradient torque in Eq. (15) is excluded, assuming that for GEO 

orbit this torque is significantly less than the electrostatic torque in Eq. (14). 

Substituting Eqs. (35) and (36) into Eqs. (13), (32) and (33), then the simplified nonlinear equations are written as 
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Equations (38) and (39) are independent of the pitch attitude angle   and coincide with Eq. (18) in Reference [26]; 

therefore, in this case, the control laws using Eqs. (21 and (22) can be used from Reference [26]: 

sin ,xu c c          (40) 

,y d
u c d        (41) 

The next step is to choose the attitude control law to stabilize the equation of motion in Eq. (37). 

 



IV. Stability of Charged Closed Loop Attitude Motion  
 

Charge Feedback Control Analysis 

It is possible to control of the attitude motion using only the magnitude and sign of the electrical charge of the tug.  

This concept is explored in the following developments for a range of feedback control formulations. The general 

control law of the electrical change is given as 

     1 1 11 0f         (42) 

where  f   is the odd periodic function,   is a constant feedback control parameter. 

The odd function  f   is represented as   

   sin , 1,2,...f n n        (43) 

 

Then the electrostatic  torque in Eq. Ошибка! Источник ссылки не найден., with accuracy up to terms of the 

first order  , is written as 

  1 2sin 2 sin 2 sin, ,E dL n           (44) 
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
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Let us assume that the control laws in Eqs. (40) and (41) provide the realization of a stable position of the 

equilibrium equations (38) and (40). 

sd d          (46) 

Eq. (37) is thus rewritten as 

 

 
2 sin 2 sin 2 sin n           (47) 

with the following simulation parameter definitions: 
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The debris shape to separation distance constraint in Eq. (34) is rewritten into the following inequality expression: 

1 1
3

R

d
       (50) 

Next the standard assumption is made that 
2 0        (51) 

As can be seen from Eq. (44), this torque becomes zero at the points 

 , 0,1,2,...
2

k k


        (52) 

Using the linearized rotational equation in Eq. (47), the points  

0s k         (53) 

correspond to the stable equilibrium position, and the points, 

2
u k


        (54) 

correspond to the unstable equilibrium position. 

 

In a small neighborhood of the stable equilibrium position  

0s         (55) 

which allows Eq. (47) to be reduced to  
2 22 2n            (56) 

 

Next Eq. (56) is rewritten through the use of a dimensionless time 2 t    to a very simple form 

 
2            (57) 

Here the differentiation notation    
d

d
   is used and the following dimensionless small parameter   is 

introduced 
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For 0   Eq. (57) corresponds to an equation of unperturbed motion 

0         (59) 

and an energy integral  
2 2

2 2
E

 
       (60) 

Using the following initial conditions: 

0: , 0m          (61) 

this leads to the initial energy expression of the form 
2

2

mE


       (62) 

As a result Eq. (59) has the following general solution: 

cosm t       (63) 

 

From Eq. (62) follows an elegantly simple formula for the oscillations amplitudes of the pitch attitude angle 

2m E         (64) 

The differentiation of Eq. (60) by Eq. (56) yields 
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The amplitude m  in the closed neighborhood of the equilibrium in Eq. (55) decreases with time if 0  . This is 

satisfied according to Eq. (58) only when the coefficient 

0         (67) 

Thus, the formula in Eq. (66) shows that the control law in Eq. (42) leads to a decrease in the amplitude of small 

oscillations of the debris in the small neighborhood of a stable equilibrium position in Eq. (55). On the other hand, it 

is easy to see that the factor in Eq. (66)  

 
2
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 


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
      (68) 

for the small vicinity of a stable equilibrium position in Eq. (55) has the third order of smallness.   In other words, 

the oscillations amplitude of the pitch attitude angle in the vicinity of the point in Eq. (55) will decrease very slowly.  

 

 

Numerical Simulation of the Odd Control Solution 

 

For numerical simulations, system parameters are chosen as in Table 1. The stabilizing control law in Eq. (43) is 

considered for 1,2,3n   

   1 1 11 sin 0n          (69) 

 

The differential equation in Eq. (56) are integrated with the following initial conditions:  

0 00.5, 0         

   

Table 1:  Simulation parameters for the detumble control scenario 

Parameter Value Parameter Value Parameter Value 

2,  J kgm  50 ,  l m  0.5 n 1; 2; 3 

1,kW  -20   100 ,  sd m  1.997 

1,  R m  0.5 2, 2, ,a bR R  0.5909 2, ,cR m  0.5909 

 



   

Figs. 2-4 show the time history (hours) of  the pitch attitude angle    (rad)  and the oscillations amplitude m

(rad)  for different values n .  We note that the parameter  has a small impact on the damping of the pitch attitude 

angle and the detumble is reduced in all cases as predicted by the prior analysis.  Using n=2, as was done in prior 

detumble control work by Stevenson [27] for a puller configuration, yields about a 30% reduction in the tumble rate 

by the end of the simulation.  The results when using n=1 and n=3 yield are very similar results and are less 

effective than the n=2 case.  Fig. 5 shows the corresponding tug electrostatic control potentials for . This control 

potential is still practical to implement as they are similar in magnitude to naturally occurring potentials for GEO 

objects during emergence from the Earth’s shadow.   

 

 

 
Fig. 2 Time history of the pitch attitude angle   (solid)   

and ,m m  ( dotted) for Eq. (57)  1n   

 
Fig. 3 Time history of the pitch attitude angle   (solid)   

and ,m m  ( dotted) for Eq. (57)  (n=2) 

 

 
     

Fig. 4 Time history of the pitch attitude angle  (solid)   
and ( dotted) for Eq. (57)  (n=3) 

 

  



  
 

Fig. 5 Time history of the tug electrostatic potential 

 1 1 sin1 n     for n=2 

V. Numerical Simulation 
This section shows with numerical simulations how the parameters of the proposed feedback control affect the 

stability of the system. The investigation is performed by numerical integration of the initial equations of motion in 

Eqs.  (13), (32) and (33) for the control laws Eqs. (40), (41) and (76).  

sin ,xu c c         (77) 

,y d
u c d       (78) 

   1 1 11 sin 2 0          (79) 

The differential Eqs. (13), (32) and (33) are integrated with the following initial conditions 

0 00.5, 0          

0 00.5, 0        (80) 

0 02 , 0d m d       (81) 

The gravitational toque in Eq. (15) for the GEO orbit is neglected in Eq.  (13), considering it small compared with 

the electrostatic torque in Eq. (14). Additional simulation parameters of the system are given in Table 2. 

 

Table 2.  Numerical Simulation parameters  

Parameter Value Parameter Value Parameter Value 

1,  m kg  300 2 ,  m kg  1000   100 

c  -0.0001 c  -0.001 
d

c  -0.001 

,  P mN  5 
2,J kg m  50 1,kV  -20 

 

The Figs. 6 - 13 depict the time dependence of the pitch attitude angle  , the angle between local horizontal line of 

the tug and the line connecting the tug and debris  , the distance between the space tug and debris d  and the 

charge of the space tug 1  for various the tug's thrust force P .  

The simulation results for the tug's thrust force P=5mN are shown in Fig. 6-9. Figures 7 and 8 illustrates that the 

separation distance and heading are stabilized and the average indicator Ошибка! Источник ссылки не найден.  

is equal to / 0.21l d    for 3t hours . Regarding the ability to detumble the debris object while in a pusher 

configuration, the initial spin rate is first quickly reduced, but then the convergence rate slows down as predicted 

with the above linearized analysis.  The period where the relative motion is still settling to the steady-state location 

yielded a stronger detumble performance, illustration a direction of future research to investigate this coupled 

behavior further. 

If we take a lighter space tug,  a heavier space debris and a less voltage, then as shown in Fig. 10-15, then the initial 

transient behavior is different, but the convergence properties of the dynamic process practically do not change in 

comparison with the nominal version (Tabl. 2, Figs. 6-9).  This simulations illustrates the robustness of the proposed 

control solution to system uncertainties.  In both cases the detumble control is able to reduce the spin rate while 

maintaining a stable separation distance in this puller configuration. 



 
Fig. 6 Time history of the pitch attitude angle   

 
Fig. 7 Time history of the angle    

 
Fig. 8 Time history of the distance between the bodies d  

 
Fig. 9 Time history of the electrical charge of the tug  1 1 s n 21 i     

 

 

 



 
Fig. 10 Time history of the pitch attitude angle    

for modified system parameters  

 
Fig. 11 Time history of the angle    

for modified system parameters  

 

 
Fig. 12 Time history of the distance between the bodies d  for modified system parameters  

 

 



 
Fig. 13 Time history of the electrical charge of the tug  

 1 1 s n 21 i     

for modified system parameters  

 

 

 

VI. Conclusion 

 

This study explores the relative motion and debris spin rate stability of a pusher electrostatic tug configuration.  

A simplified electrostatic force and torque formulation is employed to perform an analytical stability analysis for 

small departure motions.  A detumble control formulation is investigated with an feedback function using an odd 

dependence on the relative rotation angle.  In this analytical analysis the nominal separation location is held fixed in 

an along-track configuration.  A challenge with the detumble convergence rate from this control structure is 

analytically discussed.  The numerical simulations illustrate the predicted relative motion and tumble rate stability 

for a range of tug force configuration, illustrating the robustness to such control parameter variations.  Future work 

could investigate the impact in uncertainties in shape.  While this study considers a range of mass, inertia and 

control potentials, the debris shape is assumed to be cylindrical.  If the modeled and actual shape differ than the 

torque modeling errors could impact both the performance and convergence of the detumble control.  Further, this 

work is specific to planar rotation of the debris.  It would be interesting to expand this analysis to general three-

dimensional relative rotation and modify the control solution for such a scenario. 
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