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Abstract 

We consider tethered tug-debris system with a low-thrust tug that is used for the active debris removal. The debris 

is considered as a rigid body with fuel residuals. The chaotic motion of the system could be caused by the oscillations 

of the debris object relative to the tether, oscillations of the fuel residuals in the fuel tanks of the debris, eccentricity of 

the orbit and longitudinal oscillations of the tether. In this paper the chaotic motion induced by the oscillations of the 

debris object with the fuel residuals relative to the tether is considered. Stable and unstable stationary solutions are 

presented for the motion of the system in a circular orbit, which depend on the value of the tug’s thrust. It is shown 

that the unstable solutions give rise to the chaotic motion of the system. Poincare sections and Lyapunov exponents 

are used to detect the chaotic processes in the considered dynamical system.  
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Nomenclature 

𝑚1–  mass of the space tug; 

𝑚2–   mass of the space debris; 

𝑚3–  mass of the fuel residuals; 

𝑙  –  tether length; 

𝑎 –  distance from the tether attachment point to 

  the debris center of mass; 

𝑏 –  distance from the tether attachment point to 

  the fuel pendulum attachment point; 

𝑐 –   distance from the fuel pendulum attachment 

 point to the center of mass of the fuel residuals 

𝛼 –   angle between the local vertical axis and the  

 tether 

𝜑 –   angle between the tether and the debris axis 

𝛽 –  angle between the debris axis and the fuel  

 pendulum 

𝑅 –  distance from the Earth center to the  

 center of mass of the system 

𝜃 –  true anomaly angle 

𝐽𝑥 −  moment of inertia of the debris relative to the  

 longitudinal axis 

𝐽𝑧 −  moment of inertia of the debris relative to the  

 transverse axis 

 

1. Introduction 

Space tethers is considered as one of the methods for 

safe transportation of large space debris objects using 

space tugs [1–4]. Understanding the dynamical behavior 

of the tethered tug-debris system is essential for the 

success of active debris removal missions.  

If the space tug and debris connected by a tether move 

around the Earth in elliptical or circular orbit, the 

dynamic of the system is caused primarily by the tug’s 

thrust and gravitational force and torque. The eccentricity 

of the orbit, longitudinal oscillations of the tether cause 

perturbations in the motion of the system. Tethered tug-

debris system can undergo chaotic behavior. The chaotic 

motion of a tethered system was reported in a paper by 

Misra et al. [5,6] and by Aslanov [7]. In [5] Misra show 

that chaos could occur only for elliptic orbits or in the 

presence of both pitch and roll motion of the system. In 

[7], it is shown that a chaotic planar motion exists due to 

the flexibility of the tether and the presence of the low 

thrust. 

Yet another source of the perturbations is the motion 

of fuel residuals in the tanks of the debris and the motion 

of the debris as a rigid body relative to the tether. In this 

paper we investigate the chaotic motion of the system 

induced by the oscillation of the debris body and the fuel 

residuals relative to the tether.  

In the part 2 the mathematical model of the system 

described. In the part 3 the chaotic motions of the system 

are investigated using Poincare sections and Lyapunov 

exponents. 

 

2. Mathematical model  

2.1 Motion of the dug-debris system with fuel residuals  

Considered tug-debris system is presented in Fig. 1. 

The system consists of the space tug, tether, space debris 

object and the fuel residuals. It is supposed that the space 

tug has an attitude control system that maintains required 

orientation of the tug, so the space tug is represented as a 

point mass 𝐶1. The tether 𝐶1𝐴 is considered as a massless 

rod. The debris is considered as a rigid body with a fuel 

sloshing mass. 𝐶2  is the center of mass of the debris 

object. We use the simplest model where the sloshing 
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liquid is modelled as an equivalent pendulum model. 

This model can be used when the oscillations of liquid 

are small [8,9]. The pendulum that represents the fuel 

residuals in the debris fuel tank is represented as the point 

mass 𝐶3 with mass 𝑚3 attached to the massless rod 𝐵𝐶3 

of length 𝑐 . The rod 𝐵𝐶3  attached to the debris at the 

point 𝐵 on its longitudinal axis. 

 
Fig. 1. Tug-debris system 

  The motion of the system is considered relative to 

the local vertical local horizontal (LVLH) orbital frame 

𝐶𝑥𝑜𝑦𝑜. Frame’s origin 𝐶 is in the center of mass of the 

system. Axis 𝐶𝑥𝑜  lies on the orbital plane and is 

aligned with the local vertical axis for the center of mass 

of the system. Axis 𝐶𝑦𝑜 also lies on the orbital plane and 

directed to the orbital velocity vector of the center of 

mass.  

The motion of the center of mass of the system in 

Earth centered inertial frame 𝑂𝑋𝑌  described by two 

equations 

�̈� = −
𝜇

𝑅2
+ 𝑅�̇�2 (1) 

�̈� = −
1

𝑅
[

𝑃

𝑚
+ 2�̇��̇�] (2) 

where 𝑚 = 𝑚1 + 𝑚2 + 𝑚3  is the total mass of the 

system, 𝑃  is the thrust of the tug. Vector of the tug’s 

thrust is directed into the opposite direction of the 𝐶𝑦0 

axis. 

The Lagrange formalism is used to write the motion 

equations of the system in non-inertial frame 𝐶𝑥0𝑦0 

𝑑

𝑑𝑡

𝜕𝑇

𝜕�̇�𝑖  
−

𝜕𝑇

𝜕𝑞𝑖  
= 𝑄𝑖 ,  𝑖 = 1, … ,3 (3) 

where T is the kinetic energy of the system, 𝑞1 = 𝛼, 𝑞2 =
𝜑, 𝑞3 = 𝛽 are the generalized coordinates of the system, 

𝑄𝑖  is the generalized force for 𝑞𝑖. 

The positions of the debris 𝝆2 = [𝑥2, 𝑦2]𝑇 , its fuel 

mass 𝝆3 = [𝑥3, 𝑦3]𝑇  and the tug 𝝆1 = [𝑥1, 𝑦1]𝑇  are 

described by the following expressions relative to the 

origin 𝐶 of the 𝐶𝑥0𝑦0 frame 

𝝆1 = 𝝆𝐴 − 𝑨𝛼𝒆𝒙 𝑙 (4) 

𝝆3 = 𝝆𝐴 + 𝑨𝛼𝑨𝜑(𝒆𝒙 𝑏 + 𝑨𝛽𝒆𝒙 𝑐) (5) 

𝝆2 = 𝝆𝐴 + 𝑨𝛼𝑨𝜑𝒆𝒙 𝑎 (6) 

where 𝑙 = 𝐶1𝐴 is the tether length, 𝒆𝑥 = [1  0]𝑇 , 𝑨𝛼 , 𝑨𝜑, 𝑨𝛽  

are rotation matrixes in OXY plane 

𝑨𝑥 = [
cos 𝑥 − sin 𝑥
sin 𝑥 cos 𝑥

] (7) 

Point C is the center of mass of the system, so we can write 

∑ 𝝆𝑖𝑚𝑖

3

𝑖=1

= 𝟎 (8) 

This equation allows us to express 𝝆𝐴 for the expressions 

(1)-(3) 

𝝆𝐴 =
𝑨𝛼𝑨𝜑𝒆𝒙 𝑎 𝑚1 + 𝑨𝛼𝑨𝜑(𝒆𝒙 𝑏 + 𝑨𝛽𝒆𝒙 𝑐)

𝑚
 (9) 

The kinetic energy of the relative motion of the tug 

debris and the fuel is given by the expression 

2𝑇 = ∑ 𝑚𝑖𝑽𝑖
2

3

𝑖=1

+ 𝐽𝑧𝜔2
2 (10) 

where 𝑽1 = [𝑉1𝑥 , 𝑉1𝑦]
𝑇

= 𝑑𝝆1 𝑑𝑡⁄ ,  𝑽2 = [𝑉2𝑥, 𝑉2𝑦]
𝑇

=

𝑑𝝆2 𝑑𝑡⁄ , 𝑽3 = [𝑉3𝑥, 𝑉3𝑦]
𝑇

= 𝑑𝝆3 𝑑𝑡⁄ .  

Generalized force 𝑄𝑖  on coordinate 𝑞𝑖 (𝑖 = 1,2,3) can 

be written as  

𝑄𝑖 = 𝑷 ⋅
𝜕𝝆1

𝜕𝑞𝑖

+ ∑ 𝑮𝑘 ⋅
𝜕𝝆𝑘

𝜕𝑞𝑖

3

𝑘=1
+ 𝑀𝑖 (11) 

where  

𝑷 = −[0   1]𝑇𝑃 (12) 

and 𝑀𝑖 is the gravitational torque 

𝑀2 ≈ −
3𝜇

𝑅3
(𝐽𝑧 − 𝐽𝑥) sin 2(𝛼 + 𝜑) (13) 

It is supposed in the expression (13) that the tether length 

is much smaller than the OC distance, so 𝑅2  could be 

replaced by 𝑅. 

Only the debris object is considered as a rigid body 

than only the debris object can be affected by the 

gravitational torque, so 𝑀1 = 𝑀3 = 0. 𝑮𝑘 (𝑘 = 1,2,3) is 

the force column vector that includes the gravitational 

force acting on the body 𝑘 and fiction forces that should 
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be appeared in the system equations due to the non-

inertial nature of the orbital frame 𝐶𝑥𝑜𝑦𝑜 [10] 

𝐆𝑘 = 𝑚𝑘 [
2 𝜇

𝑥𝑘

𝑅3
+ 2�̇�𝑉𝑘𝑦 + �̈�𝑦𝑘 + �̇�2𝑥𝑘

−𝜇
𝑦𝑘

𝑅3
− 2�̇�𝑉𝑘𝑥 − �̈�𝑥𝑘 + �̇�2𝑦𝑘

]  (14) 

for 𝑘 = 1,2,3 . The expressions (14) obtained with the 

assumptions that the tether length is much smaller than 

the distance from the center of the Earth to the center of 

mass of the system 𝑙 ≪ 𝑅 [10]. 

Using the expressions (4)-(14) one can builds the 

differential equations (3) of the considered system. 

Obtained equations are very cumbersome, so these 

equations are not presented here.  

We suppose that chaotic motion of the system can be 

induced by the oscillations of the space debris object or 

by the oscillations of the fuel residuals in the tank of the 

debris object. The debris object is a rigid body that 

oscillates relative to the tether attachment point “A”. The 

fuel residuals are represented as the pendulum that 

oscillates relative to the point “B” of the debris. Both 

oscillatory motions can induce the chaotic motion of the 

system. To clearly illustrate the chaotic behavior of the 

system let us consider simplified model of the system 

without fuel residuals. This model allows us to write here 

the motion equations and show the influence of the 

oscillation of the debris to the attitude motion of the 

tethered system. 

2.2 Motion of the system without fuel residuals  

Suppose that the acceleration due to the low thrust tug 

is small 

𝑎𝜏 =
𝑃

𝑚
≪ 𝑔 =

𝜇

𝑅2
 (15) 

Based on this simplification, the attitude motion of the 

system can be studied assuming that the geometry of the 

orbit is preserved.  The chaotic motion of the considered 

system induced by the orbital eccentricity is presented in 

[11]. Here we focus on the influence of the debris object 

to the motion of the tethered system, so we suppose that 

the orbit is circular 𝑅 = const.   

In the expressions (3)-(14) we set 𝛽 = �̇� = �̈� = 0, 

𝑐 = 0 and write non-dimensional form of the equations 

using true anomaly angle as the independent variable  
(1 + 2 �̃� cos 𝜑 + 𝐽𝑧)𝛼′′ + (𝐽𝑧 + �̃� cos 𝜑)𝜑′′ = 

cos 𝛼 [
𝑃

𝑚1𝑙 𝑛2 − 3 sin 𝛼] + 

�̃� cos(𝛼 + 𝜑)
𝑃

𝑚1𝑙 𝑛2 − 3�̃� sin(2𝛼 + 𝜑) + 

�̃� 𝜑′(2 + (2𝛼′ + 𝜑′)) sin 𝜑 − 

3�̃�2 sin(𝛼 + 𝜑) cos(𝛼 + 𝜑) 

 

(16) 

(𝐽𝑧 + �̃� cos 𝜑) 𝛼′′ + 𝐽𝑧 𝜑′′ = 

= +
𝑃�̃� cos(𝛼 + 𝜑)

𝑛2 𝑚1𝑙
 

(17) 

−3[�̃� cos 𝛼 + 𝐽𝑧𝑥 cos(𝛼 + 𝜑)] sin(𝛼 + 𝜑)
− 2 �̃� 𝛼′ sin 𝜑 

where 

𝐽𝑧 =
𝐽𝑧 + 𝑚12𝑎2

𝑚12𝑙2
,  𝐽𝑧𝑥 =

𝐽𝑧 − 𝐽𝑥 + 𝑚12𝑎2

m12𝑙2
 (18) 

𝑚12 = 𝑚1𝑚2 (𝑚1 + 𝑚2)⁄  is the reduced mass of the 

tug-debris system,  �̃� = 𝑎/𝑙 , 𝛼′ = 𝜕𝛼 𝜕𝜗⁄ , 𝛼′′ =
𝜕2𝛼 𝜕𝜗2⁄ , 𝜑′ = 𝜕𝜑 𝜕𝜗⁄ , 𝜑′′ = 𝜕2𝜑 𝜕𝜗2⁄ , 𝑛 is the mean 

motion of the system, that   for circular orbit with radius 

𝑅 can be written as  

𝑛 = √
𝜇

𝑅3
 (19) 

For  �̃� = 𝐽𝑧 = 𝐽𝑧𝑥 = 0  the equation (16) describes the 

motion of two masses connected by a tether under the 

action of the force 𝑃 

𝛼′′ =
𝑃

𝑚1𝑙 𝑛2
−

3

2
sin 2𝛼 (20) 

This equations was presented in [11]. 

 

3. Simulation results 

In this section we illustrate that the considered system 

experiences chaotic motion induced by the motion of the 

debris object relative to the tether. 

3.1 Parameters of the system  

Parameters of the system are presented in Table 1. 

The tether of length 500 m connects two bodies with 

mass 4000 kg (debris) and 1000 kg (space tug). The 

debris equipped with low thrust propulsion system with 

thrust of 0.4 N. The system orbiting circular orbit with 

height of 800 km.  

 

Table 1. Parameters of the system 

Parameter Value 

Debris mass 𝑚2, kg 4000 

Debris moment of inertia, 𝐽𝑧 kg·m2 10000 

Debris moment of inertia, 𝐽𝑥 kg·m2 5000 

Space tug mass 𝑚1, kg 1000 

Fuel mass 𝑚3, kg 500 

AC2=a, m 4 

AB=b, m 5 

BCf=c, m 2 

Tether length 𝑙, m 500 

Tug’s thrust 𝑃, N 0.4 

Semimajor axis, km 7171 

Eccentricity, e 0 

Radius of the Earth. 𝑅𝑒, km 6371 
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3.2 Stationary points 

Considered tug-tether-debris system can be 

represented as a two mass system connected with a 

massless rod. In central gravitational field it has two 

stationary points 𝛼 = 0 (stable) and 𝛼 = 𝜋/2  
(unstable). Tug's thrust P shifts stable stationary. This 

stationary point depends on the tug's thrust, length of the 

tether and masses of the tug and the debris. Due to small 

distance from the tether attachment point A to the center 

of mass of the debris the influence of the debris object as 

a rigid body to the stationary position of the tether is 

negligible. 

To determine the stationary solutions of the equations 

(16)-(17), the derivatives are set to zero. That leads to the 

following equations 

[cos 𝛼 + �̃� cos(𝛼 + 𝜑)] × 

[
𝑃

𝑚1𝑙 𝑛2
− 3(sin 𝛼 − �̃� sin(𝛼 + 𝜑))] = 0 

(21) 

𝑃�̃� cos(𝛼 + 𝜑)

𝑛2 𝑚1𝑙
− 

3[�̃� cos 𝛼 + 𝐽𝑧𝑥 cos(𝛼 + 𝜑)] sin(𝛼 + 𝜑) = 0 

(22) 

for �̃� = 𝐽𝑧𝑥 = 0 we get stationary solutions for two mass 

system considered in [11] 

[
𝑃

𝑚1𝑙 𝑛2
− 3 sin 𝛼] cos 𝛼 = 0 (23) 

Fig.  2 and 3 show bifurcation diagrams for the angles 

𝛼 and 𝜑 as a function of tether length.   

 

 
Fig. 2. Stationary solution for 𝛼 angle as a function of 

the tether length 

 

 
Fig. 3. Stationary solution for 𝜑 angle as a function of 

the tether length 

For the full system that includes fuel residuals we 

should solve nonlinear equations (3) with all the 

derivatives are set to zero. Solutions of these equations 

for the angles 𝜑 and 𝛽 are presented in Fig. 4. 

 
Fig. 4. Stationary solution for 𝜑 and 𝛽 angles as a 

function of the tether length 

3.3 Chaotic motion  

In this section we illustrate the chaotic motion of the 

system that can induced by the oscillations of the debris 

body relative to the tether attachment point “A”.  

Fig. 5 shows the evolution of the angle 𝛼. The graph 

illustrates that the motion of the system can be disturbed 

by the attitude motion of the debris object. The attitude 

motion of the debris object can induce the chaotic motion 

of the system near the separatrix. The system starts to 

oscillate around the stationary point 𝛼𝑠 < 𝜋/2  and 

during the motion transits to oscillation around the 

stationary point 𝛼𝑠 > 𝜋/2 and vice versa.  

 

 
Fig. 5. Chaotic motion of the system without fuel 

residuals (α0 = π 2⁄ − 0.02,  φ0 = 0.5, α0
′ = φ′0 = 0) 

 

The system with fuel residuals undergoes the motion 

of a like nature. Fig. 6 shows motion of the system with 

the following initial conditions α0 = π 2⁄ − 0.02,  φ0 =
φ′0 = φ′0 = 0, β0 = 1. The oscillation of the fuel leads 

to the oscillations of the debris body relative to the tether 

with amplitude about 0.15 rad. Fig. 7 illustrates the 

motion of the debris body relative to the tether in (φ, φ′) 
phase space during the first two orbits. The oscillations 

of the angle φ also induce chaotic motion of the system 

near the unstable point. 
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Fig. 6. Chaotic motion of the system with fuel residuals 

 

 
Fig. 7. Motion of the debris relative to the tether 

 

Fig. 8 shows Poincaré maps for four trajectories with 

the following initial conditions 

a. 𝛼0 = 𝜋 2⁄ − 0.025, 𝜑0 = 1 

b. 𝑎0 = 𝜋 2⁄ + 0.002, 𝜑0 = 1 

c. 𝑎0 = 𝜋 6⁄ , 𝜑0 = 1 

d. 𝑎0 = 5𝜋 6⁄ , 𝜑0 = 1 

We can see area of chaotic motion depicted by a 

diffused set of points near the separatrix (for the first and 

the second set of initial conditions), which divide the 

phase space into two oscillation and two rotations areas. 

 
 

Fig. 8. Poincaré map for P=0.1 N and e=0.05 

 

Fig. 9 plots the largest Lyapunov exponents for three 

cases. In the first case 𝛼0 = 𝜋/2 − 0.025, �̇�0 = 0, 𝜑0 =
1 ,  𝜑′ =0 and for 𝑃 = 0.4 𝑁 . In this case the largest 

Lyapunov exponent tends to a positive value, about 0.2 

which indicates the chaotic behavior of the system.  

In the second case �̃� = 0 (𝑎 = 0). The center of mass 

of the debris body coincides with the tether attachment 

point “A”. In this case the attitude motion of the debris 

body does not affect the motion of the tether and can’t 

induce chaotic motion of the tethered system. There is no 

disturbance in the system and the largest Lyapunov 

exponent tends to zero.  

 
Fig. 9. Largest Lyapunov exponents 

 

The largest Lyapunov exponent also tends to zero if 

𝑃 = 1.2 N and �̃� ≠ 0. In this case the motion starts near 

the stable point 𝛼𝑠 = 𝜋 2⁄ , so the motion of the system in 

this case is not chaotic. 

 

4. Conclusion 

The simulation results show that tethered towing 

using low thrust space tug can lead to chaotic motion of 

the system if there is an unstable equilibrium of the 

undisturbed system. The chaotic motion of the system 

can be induced by the oscillations of the space debris 

object relative to it’s the tether attachment point and by 

oscillations of fuel residuals. 
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