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Abstract 

The problem of space debris mitigation is one of the most important problems of modern astronautics. Among 

existing projects and studies, a special place is occupied by an active removal of large space debris, which includes 

non-functional satellite and upper rocket stages. Many of these space objects have fuel tanks, in which residual fuel 

can remain. The movement of fuel can have a significant impact on the behavior of the large space debris during its 

removal. The purpose of this work is to study the dynamics of large space debris with fuel residues during its 

deorbiting by an active spacecraft-tug. The motion of a mechanical system consisting of a small tug, a massless 

tether, and passive large space debris with fuel residues is considered in an orbital reference frame. It is supposed 

that the system is under the influence of the gravitational torques and the constant thrust force generated by engines 

of the tug. It is assumed that the motion occurs in the plane of the orbit. The tug is considered as a material point, and 

the space debris is a rigid body. The equations of the space tether system motion were constructed by the means of 

the Lagrange formalism. The relative equilibrium positions of the system were found. For each of them, the first-

approximation equations were constructed. These equations were used to study the influence of the system 

parameters on the stability of the equilibrium positions. Two different configurations of the space tether system, 

corresponding to stationary motions, were found as a result of the analysis. Numerical simulation of the mechanical 

system motion was carried out. Its results were compared with small oscillations, which were determined using the 

first-approximation equations. The results of the study can be used to select the parameters of the transport system 

intended for towing and removing large space debris with fuel residues. 
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1. Introduction 

Interest in space tethered systems has appeared 

almost from the beginning of active near-Earth space 

exploration [1]. The first mention of such systems can 

be found in the Tsiolkovsky's work of 1895. Tethers 

were used to ensure the safety of astronauts when they 

conducted extravehicular activity. The first space 

experiment with a tether was carried out in 1966 as part 

of the Gemini-11 mission. At present, the possibility of 

using space tethered systems for solving various 

problems in space is widely studied [2-4]. One of the 

promising application areas of space tethers is active 

large space debris removal by tethered towing.  

Space debris is becoming one of the major 

challenges of modern astronautics. According to 

existing studies, it is necessary to remove at least five 

large non-functioning objects per year in order to 

preserve the possibility of active use of LEO [5].  

Analysis of the large space debris behavior, which is 

towed by an active spacecraft on a tether, requires 

studying its motion around the center of mass. The 

dynamics of such tethered systems are considered in  

[6-9], taking into account the elastic properties of the 

tether and space debris, as well as other factors. Existing 

works do not consider a large class of space debris 

objects containing fuel on their board. It should be noted 

that there are studies in which the motion of a spacecraft 

with fuel remains is investigated [10-12]. This paper is 

an extension of the studies [13, 14]. 

The purpose of this work is to study the dynamics of 

large space debris with fuel residues during its 

deorbiting by an active spacecraft-tug. The 

mathematical model of the system will be developed, its 

equilibrium positions will be found and numerical 

simulation of the motion of the system will be carried 

out. 

The paper consists of four sections. The state of art 

and paper purpose are given in Introduction. The second 

section is devoted to the mathematical model 

development and to the search its equilibrium positions. 

The results of numerical simulation and their discussion 



69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.  

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-18-C1.3.9                           Page 2 of 7 

are given in the third section. The fourth section 

contains conclusions.  

 

2. Mathematical models and methods 

2.1 Equations of motion 

Considered mechanical system consists of a small 

tug, a tether, and passive large space debris with fuel 

residues (Fig. 1). It is assumed that motion occurs in the 

orbital plane. The motion of the orbital tug is 

completely determined by its orientation and propulsion 

systems, that allows to consider the tug as a material 

point A  of 
1m  mass. The thrust force of the tug’s 

engine F  has a constant value, and it is directed along 

the local horizon. The tether is massless and 

inextensible rod of l  length. The large space debris is 

rigid body. Its mass is 2m . The principal moments of 

inertia of the space debris without fuel are 
x

I , 
y

I , and 

z
I . The distance from the point of the tether attachment 

to the centre of mass of the space debris is denoted by 

BC a= . To describe the motion of the fuel residues in 

space debris tanks the equivalent pendulum model is 

used [13]. The mass of the pendulum is 3m , its length is 

ED b= . The distance from the pendulum suspension 

point to the tether attachment point is BE d= . 

 

 
Fig. 1. Space tethered system in orbital reference frame 

 

Equations of the system motion can be written in 

orbital reference frame Oxyz . Its origin moves in a 

circular orbit and at the initial instant coincides with the 

position of the tug. The axis Ox  lies on the local 

horizontal and it is directed towards the orbital flight. 

The axis Oz  points away from the Earth centre along 

the local vertical. The axis Oy  is perpendicular to the 

plane of the orbit and completes the right-hand system. 

The orbital reference frame rotates around the centre of 

the Earth with constant angular velocity [15] 

3
rω µ −= ,     (1) 

where µ  is the gravitational constant of the Earth, r  is 

the distance from the centre of the Earth to origin O . 

To obtain the equations of the considered space tethered 

system motion, the Lagrange equation of the second 

kind in the matrix form can be used [15] 

1
[ ( )] ( ) ( )

2

T
A A A    + − =    q q

q q q q q q q q Qɺɺ ɺ ɺ ɺ ɺ , (2) 

where [ ( )]A q  is the inertia matrix, which elements are 

given in Appendix A. This matrix is square, positive 

defined and symmetric. It can be found from the kinetic 

energy of the system 

[ ]
1

( )
2

T
T A= q q qɺ ɺ .  (3) 

the [ , , , , ]
T

A A
x z θ α β=q  is a generalized coordinate 

column vector, 
A

x  and 
A

z  are coordinates of the tug in 

the orbital reference frame, θ  is the angle of the tether 

deflection from Ox  axis, α  is the angle between the  

space debris axis and the tether, β  is the angle between 

the pendulum and the space debris axis (Fig. 1). The 

notation ( )A  q
q  indicates the partial derivative of the 

inertia matrix with respect the q vector. The 

components of the generalized forces vector 

[ , , , , ]T

x z
Q Q Q Q Qθ α β=Q  are determined by the tug’s 

thrust force, gravity force, gravity gradient torque, and 

inertia forces, which are caused by the rotation of a non-

inertial orbital reference frame. These components are 

given in the Appendix B. In calculating the generalized 

forces, it was assumed that the quantities A
x

r
, A

z

r
, 

l

r
 

are small. The gravitational and inertial forces were 

expanded in a series of these small parameters and 

nonlinear terms were rejected. This technique is widely 

used for obtaining simplified equations of motion of 

space tethered systems [1, 4]. 

 

2.2 Equilibrium configurations 

Various equilibrium configurations can exist in the 

system. In order to find these configurations, let us 

equate the generalized velocities to zero in the equations 

(2).  

,
A

mx F=ɺɺ  

0,
A

z =ɺɺ  

( )
( ) 2

1 2 3

2 3 3

3
sin sin 2

2

m m m l
F m m l

r

µ
θ θ

+
+ = , 

( ) ( )

( )
( )

2 3

3

2 sin

3
sin 2 ,

x z

Fa m m

m I I

r

θ α

µ
θ α

+ + =

−
= +

  (4) 

( )3 sin 0;
Fm b

m
θ α β+ + =  

where 
1 2 3m m m m= + +  is the total mass of the system. 

The first two equations give obvious solutions 
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A

F
x

m
=ɺɺ , 0A A

z const z= = . 

From the last three equations of the system (4) two sets 

of possible values of the angular coordinates for the 

equilibrium state can be obtained 

1 1 10, 0, 0,θ α β= = =   (5) 

and 

( )

( )

2

2 2

2 2 2

arccos , 1

arccos , 1
m I m I

k k

k k k k k k

θ θ

θ θ

θ

θ α

β θ α

= ≤

+ = ≤

= − +

   (6) 

where 
3

13

Fr
k

m l
θ

µ
=  is the coefficient determining the 

ratio of tug thrust force and forces corresponding to 

unperturbed orbital motion, 
( )1 2 3

2

2

2
m

m m m
k

m m

+
=  is the 

coefficient characterizing the mass ratio of the space 

tethered system components, 2
I

x z

m al
k

I I
=

−
 is the  

coefficient depending on the distribution of the masses 

of the large space debris and on the location of the 

tether attachment point. 

In the case when 1kθ >  and 1
m I

k k kθ > , there can 

be only the first configuration of the system (Fig. 2). In 

order to satisfy the condition 1kθ > , it is required either 

to increase the thrust of the tug F , or to reduce the 

tether length l . To implement the second configuration 

(Fig. 3), the condition 1
m I

k k kθ ≤  must be satisfied. This 

condition can be achieved by reducing the distance from 

the attachment point of the tether to the center of mass 

of the space debris. 

 

2.3 Analysis of the system motion in the vicinity of the 

equilibrium positions 

To study the oscillations of the system in the vicinity 

of the equilibrium positions (5) and (6), the equations of 

the first approximation can be written 

[ ] [ ] , ,
k k

A C 0 k 1 2+ = =x xɺɺ  (7) 

where [ ] { }k

k ijA a=  and [ ] { }k

k ijC c==  is square 

symmetric matrices of inertia coefficients and elasticity 

coefficients due to the accelerated motion of the system, 

x  is the column vector of the deviations of the angles 

θ , α , and β  from the undisturbed motion. 

[ , , ]Tx x xθ α β=x .   (8) 

In the linear configuration, the characteristic equation of 

the first approximation equation (7) determines three 

natural frequency of the system 
6 4 2

0 1 2 3 0k k k kω ω ω+ + + = . (9) 

For the equilibrium state (5), the coefficients of the 

characteristic equation (9) can be expressed in terms of 

the dimensionless parameters: 
2 1m mη = is the relative 

mass of the tug, 3 2m mε =  is the relative mass of the 

fuel, l aλ =  is the relative length of the tether, 

d aδ =  is the relative length of the pendulum, 

( ) ( )2

2x z I
I I m a l akκ = − =  is the space debris shape 

factor. 

 

 
Fig. 2. First equilibrium configuration 

 
Fig. 3. Second equilibrium configuration 

 

The discriminant of the cubic equation has the form 

[17] 

( )3 24 27D p q= − + ,  (10) 

where 

2

32

1 1

1

3

kk
p

k k

 
= − + 

 
, 

3

2 32 4

2

1 11

2

27 3

k kk k
q

k kk

 
= − + 

 
. 

The discriminant can take only positive values, since 

all its roots 2ω  are real. The values of the roots will be 

closer to each other, the smaller the value of the 

discriminant.  

An analysis of the behavior of discriminant values 

D  with a change in the parameters showed that the 

minimum values of the discriminant lie above the line 

λ κη= .   (11) 

Absolute values of the discriminant decrease with  

increasing η  and λ . The equation (11) gives a critical 

combination of parameters, in which all three natural 

frequencies of the space tethered system oscillations can 

approach one another.  
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Figure 4 demonstrates the dependence of the natural 

frequencies on the tether relative length λ . Analysis of 

equation (11) and Fig. 4 shows that for relatively small 

values of the tug’s relative mass η  and the tether 

relative length λ , it is possible to approach the values 

of all three natural frequencies 
i

ω  of the system, which 

can lead to a redistribution of energy between the modes 

of oscillations. 

 

 
Fig. 4. Dependence of natural frequencies on the tether 

relative length 
 

In the case of small oscillations of the tethered 

system around the second equilibrium configuration (6), 

the coefficients of the characteristic equation depend on 

more than four parameters. This does not allow to 

perform a qualitative analysis of the influence of the 

mechanical system parameters on its behaviour. 

Numerical analysis of the natural modes and 

frequencies of the system near the second equilibrium 

configuration did not detect combinations of the system 

parameters, for which the discriminant of the 

corresponding cubic equation (9) tends to zero. This 

excludes the possibility of convergence of natural 

frequencies and redistribution of energy between 

different oscillation modes. 

 

3. Results of numerical simulations 
The results of numerical modeling of the oscillations 

of the system showed that under the same initial 

conditions, the largest oscillation amplitudes are 

observed in those cases when all three natural 

frequencies have close values. 

Let us consider the case when the oscillations occur 

near the first equilibrium configuration (5). The space 

tethered system has the following parameters: 

1 20kgm = , 
2 3000 kgm = , 

3 30 kgm = , 6700 kmr = ,  

1F N= , 145l m= . As a result of the addition of all 

three modes of oscillations with close frequencies, beats 

are observed, under which the energy of oscillations is 

redistributed between different parts of the system (Fig. 

5). The amplitude of the towed space debris oscillations 

does not remain constant (Fig. 5, angle α ), which 

indicates the transfer of energy to the other elements of 

mechanical system. The amplitude of the fuel remains 

oscillations β  at certain times is 20 times greater than 

the amplitude of the oscillations of the space debris α . 

Although the angle of the tether  deflection θ  does not 

exceed α, the addition of oscillations can adversely 

affect the orientation of the tug. This can create 

additional difficulties in the operation of the tug 

orientation system. 

 

 
Fig. 5. The change in angles over time with close values 

of natural frequencies 

 

If the proximity of the natural frequencies is 

violated, then the regular oscillations of the towed space 

debris are observed, while the other angles change 

insignificantly. 

Let us consider the case when the oscillations occur 

near the second equilibrium configuration (6). The 

space tethered system has the following parameters: 

1 500 kgm = , 
2 2000 kgm = , 

3 20 kgm = , 6700 kmr = ,  

0.15F N= , 100l m= . Calculations show that in this 

case the periods of oscillations are much larger than in 

the first case. At relatively small initial deviations in the 

angles  θ  and α , almost regular oscillations around the 

equilibrium position are observed. These oscillations are 

weakly dependent on the fuel residues oscillations, 

which is convenient to represent in the phase portraits 

(Fig. 6). 

In the case of significant initial deviations, 

oscillations around both equilibrium configurations 

occur (Fig. 7). But, as in the case of small perturbations, 
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Fig. 6. Phase portraits for small initial deviations 
 

the oscillations of different angles are weakly dependent 

on each other. It can be argued that in the case of first 

configuration the presence of fuel residues does not 

affect noticeably the behavior of the system when the 

natural frequencies are not close. In the case of second 

configuration, there is no noticeable effect of fuel 

residues in tanks at any reasonable ratio of the system 

parameters (there are no full tanks). 

 

6. Conclusions  

In the framework of the study the equations of the 

plane motion of the space tethered system when towing 

large space debris with fuel residues in the orbital 

reference frame were obtained. Using these equations, 

the equilibrium configurations of the space tethered 

system and the conditions for their existence were 

found. The proportions of the system parameters, under 

which both one and several equilibrium configurations 

of the space tethered system are possible, were 

established. An analysis of the parameters influence on 

the natural frequencies of small oscillations showed that 

for  the first equilibrium configuration the 

approximation of  natural  frequencies  is  possible.  The  

 
Fig. 7. Phase portraits for large initial deviations 

 

results of numerical simulation confirmed the possibility 

of increasing the amplitudes of oscillations due to the 

redistribution of the system energy.  

It was found that in the case of the second 

equilibrium configuration, two types of oscillations are 

possible. In both cases, the residual fuel does not have a 

significant effect on the oscillations of the tether and the 

space debris. For small initial deviations, there are 

regular oscillations around one of the two possible 

equilibrium positions. With an increase in initial 

deviations, the amplitude of the oscillations can be more 

than twice the value of the corresponding equilibrium 

position angle. 

The results of the study can be used to select the 

parameters of the transport system intended for towing 

and removing large space debris with fuel residues. 
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Appendix A (Elements of the inertia matrix) 

The nonzero elements of the inertia matrix [ ( )]A q  

are determined through the system parameters and the 

generalized coordinates as follows 

11 1 2 3 ,a m m m= + +  

( )

( ) ( )

13 31 2

3

sin sin

sin sin sin ,

a a m l a

m b l d

θ α θ

α β θ θ α θ

= = + + +  

+ + + + + +  

( )

( ) ( )
14 41 2

3

sin

sin sin ,

a a m a

m b d

α θ

α β θ α θ

= = + +

+ + + + +  
 

( )15 51 3 sin ,a a m b α β θ= = + +  

22 1 2 3 ,a m m m= + +  

( )

( ) ( )

23 32 2

3

cos cos

cos cos cos ,

a a m l a

m b l d

θ α θ

α β θ θ α θ

= = + + +  

+ + + + + +  
 

( )

( ) ( )
24 42 2

3

cos

cos cos ,

a a m a

m b d

α θ

α β θ α θ

= = +

+ + + + +  
 

( )25 52 3 cos ,a a m b α β θ= = + +  

( )
( )

]

2 2

33 2

2 2 2

3

2 cos

2 cos

2 cos 2 cos ,

y
a m l a al I

m l d b bl

dl bd

α

α β

α β

= + + + +

+ + + + + +

+ +

 

( )

]

2

34 43 2

2 2

3

cos

cos

cos 2 cos ,

y
a a m a al I

m d b bl

dl bd

α

α β

α β

 = = + + + 

+ + + + +

+ +

 

( )( )2

35 53 3 cos cos ,a a m b bl bdα β β= = + + +  

( )2 2 2

44 2 3 2 cos ,
y

a m a I m d b bd β= + + + +  

( )2

45 54 3 cos ,a a m b bd β= = +  

2

55 3 .a m b=  

 

Appendix B (Components of the generalized forces 

vector) 

The components of the generalized force vector have 

the form 

( ) ( )1 2 32 2 cos ,
x A A

Q F m z m m z lω ω θ θ= − − + + ɺɺ ɺ  

( ) ( )1 2 32 2 sin ,
z A A

Q m x m m x lω ω θ θ= + + + ɺɺ ɺ  

( )
( )

( ) ( )
( ) ( )

2

1 2 3

3

1 2 3

2 3

2 3

3
sin 2

2

2 sin cos

2 sin sin ,

O

A

A

m m m l
Q

m m m r

m m x l l

m m z l l

θ µ θ

ω θ θ θ

ω θ θ θ

+
= +

+ +

+ + + −

− + +

ɺɺ

ɺɺ

 

( )
( )

3

3
sin 2 ,

2

x z
I I

Q
r

α µ θ α
−

= +  

0.Qβ =  
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